ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.02850
  4. Cited By
Understanding Attention and Generalization in Graph Neural Networks
v1v2v3 (latest)

Understanding Attention and Generalization in Graph Neural Networks

8 May 2019
Boris Knyazev
Graham W. Taylor
Mohamed R. Amer
    GNN
ArXiv (abs)PDFHTMLGithub (284★)

Papers citing "Understanding Attention and Generalization in Graph Neural Networks"

28 / 28 papers shown
Title
BioX-CPath: Biologically-driven Explainable Diagnostics for Multistain IHC Computational Pathology
BioX-CPath: Biologically-driven Explainable Diagnostics for Multistain IHC Computational Pathology
Amaya Gallagher-Syed
Henry Senior
Omnia Alwazzan
Elena Pontarini
Michele Bombardieri
C. Pitzalis
M. Lewis
Michael Barnes
Luca Rossi
Gregory G. Slabaugh
108
0
0
26 Mar 2025
DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
Jiaqi Wang
Yuhang Zhou
Zhixiong Zhang
Qiguang Chen
Yongqiang Chen
James Cheng
OODD
148
1
0
18 Feb 2025
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Song Wang
Xiaodong Yang
Rashidul Islam
Huiyuan Chen
Minghua Xu
Jundong Li
Yiwei Cai
OODD
245
3
0
07 Jan 2025
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODDCML
161
0
0
29 Oct 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
133
5
0
25 Oct 2024
Tensor-Fused Multi-View Graph Contrastive Learning
Tensor-Fused Multi-View Graph Contrastive Learning
Yujia Wu
Junyi Mo
Elynn Chen
Yuzhou Chen
83
1
0
20 Oct 2024
EUGENE: Explainable Unsupervised Approximation of Graph Edit Distance with Generalized Edit Costs
EUGENE: Explainable Unsupervised Approximation of Graph Edit Distance with Generalized Edit Costs
Aditya Bommakanti
Harshith Reddy Vonteri
Sayan Ranu
Panagiotis Karras
58
0
0
08 Feb 2024
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
457
950
0
02 Mar 2020
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OODVLM
191
3,452
0
28 Mar 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
257
7,695
0
01 Oct 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
310
2,154
0
22 Jun 2018
Attentive cross-modal paratope prediction
Attentive cross-modal paratope prediction
Andreea Deac
Petar Velickovic
Pietro Sormanni
83
60
0
12 Jun 2018
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal
  Graphs
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs
Jiani Zhang
Xingjian Shi
Junyuan Xie
Hao Ma
Irwin King
Dit-Yan Yeung
GNN
110
573
0
20 Mar 2018
SpectralNet: Spectral Clustering using Deep Neural Networks
SpectralNet: Spectral Clustering using Deep Neural Networks
Uri Shaham
Kelly P. Stanton
Henry Li
B. Nadler
Ronen Basri
Y. Kluger
GNN
66
286
0
04 Jan 2018
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
Matthias Fey
J. E. Lenssen
F. Weichert
H. Müller
3DPC
166
442
0
24 Nov 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
481
20,233
0
30 Oct 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
786
132,363
0
12 Jun 2017
A Study and Comparison of Human and Deep Learning Recognition
  Performance Under Visual Distortions
A Study and Comparison of Human and Deep Learning Recognition Performance Under Visual Distortions
Samuel F. Dodge
Lina Karam
3DH
73
423
0
06 May 2017
Attentive Explanations: Justifying Decisions and Pointing to the
  Evidence
Attentive Explanations: Justifying Decisions and Pointing to the Evidence
Dong Huk Park
Lisa Anne Hendricks
Zeynep Akata
Bernt Schiele
Trevor Darrell
Marcus Rohrbach
AAML
61
79
0
14 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
418
1,824
0
25 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
662
29,156
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
358
7,671
0
30 Jun 2016
Attention Correctness in Neural Image Captioning
Attention Correctness in Neural Image Captioning
Chenxi Liu
Junhua Mao
Fei Sha
Alan Yuille
3DV
82
220
0
31 May 2016
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
338
18,651
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
A New Space for Comparing Graphs
A New Space for Comparing Graphs
Anshumali Shrivastava
Ping Li
71
32
0
17 Apr 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,963
1
21 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,902
0
12 Nov 2013
1