Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.02249
Cited By
MixMatch: A Holistic Approach to Semi-Supervised Learning
6 May 2019
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MixMatch: A Holistic Approach to Semi-Supervised Learning"
20 / 570 papers shown
Title
Parting with Illusions about Deep Active Learning
Sudhanshu Mittal
Maxim Tatarchenko
Özgün Çiçek
Thomas Brox
VLM
21
59
0
11 Dec 2019
The Group Loss for Deep Metric Learning
Ismail Elezi
Sebastiano Vascon
Alessandro Torcinovich
Marcello Pelillo
Laura Leal-Taixe
14
50
0
01 Dec 2019
Rethinking deep active learning: Using unlabeled data at model training
Oriane Siméoni
Mateusz Budnik
Yannis Avrithis
G. Gravier
HAI
27
79
0
19 Nov 2019
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
55
2,362
0
11 Nov 2019
Modeling EEG data distribution with a Wasserstein Generative Adversarial Network to predict RSVP Events
Sharaj Panwar
P. Rad
T. Jung
Yufei Huang
GAN
31
50
0
11 Nov 2019
Weakly Supervised Deep Learning Approach in Streaming Environments
Mahardhika Pratama
Andri Ashfahani
Mohamad Abdul Hady
11
13
0
03 Nov 2019
Learning from Label Proportions with Consistency Regularization
Kuen-Han Tsai
Hsuan-Tien Lin
19
44
0
29 Oct 2019
Consistency Regularization for Generative Adversarial Networks
Han Zhang
Zizhao Zhang
Augustus Odena
Honglak Lee
GAN
22
284
0
26 Oct 2019
GraphMix: Improved Training of GNNs for Semi-Supervised Learning
Vikas Verma
Meng Qu
Kenji Kawaguchi
Alex Lamb
Yoshua Bengio
Arno Solin
Jian Tang
33
62
0
25 Sep 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
28
103
0
25 Sep 2019
And the Bit Goes Down: Revisiting the Quantization of Neural Networks
Pierre Stock
Armand Joulin
Rémi Gribonval
Benjamin Graham
Hervé Jégou
MQ
34
149
0
12 Jul 2019
Asymptotic Bayes risk for Gaussian mixture in a semi-supervised setting
Marc Lelarge
Léo Miolane
14
28
0
08 Jul 2019
Semi-supervised semantic segmentation needs strong, varied perturbations
Geoff French
S. Laine
Timo Aila
Michal Mackiewicz
G. Finlayson
29
29
0
05 Jun 2019
Learning Representations by Maximizing Mutual Information Across Views
Philip Bachman
R. Devon Hjelm
William Buchwalter
SSL
72
1,455
0
03 Jun 2019
Achieving Generalizable Robustness of Deep Neural Networks by Stability Training
Jan Laermann
Wojciech Samek
Nils Strodthoff
OOD
24
15
0
03 Jun 2019
Semi-Supervised Learning with Scarce Annotations
Sylvestre-Alvise Rebuffi
Sébastien Ehrhardt
Kai Han
Andrea Vedaldi
Andrew Zisserman
SSL
24
49
0
21 May 2019
Virtual Mixup Training for Unsupervised Domain Adaptation
Xudong Mao
Yun Ma
Zhenguo Yang
Yangbin Chen
Qing Li
35
52
0
10 May 2019
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma
Kenji Kawaguchi
Alex Lamb
Arno Solin
Arno Solin
Yoshua Bengio
David Lopez-Paz
39
756
0
09 Mar 2019
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
202
243
0
14 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Previous
1
2
3
...
10
11
12