54
15
v1v2 (latest)

Achieving Generalizable Robustness of Deep Neural Networks by Stability Training

Abstract

We study the recently introduced stability training as a general-purpose method to increase the robustness of deep neural networks against input perturbations. In particular, we explore its use as an alternative to data augmentation and validate its performance against a number of distortion types and transformations including adversarial examples. In our image classification experiments using ImageNet data stability training performs on a par or even outperforms data augmentation for specific transformations, while consistently offering improved robustness against a broader range of distortion strengths and types unseen during training, a considerably smaller hyperparameter dependence and less potentially negative side effects compared to data augmentation.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.