ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.00397
  4. Cited By
Fast AutoAugment

Fast AutoAugment

1 May 2019
Sungbin Lim
Ildoo Kim
Taesup Kim
Chiheon Kim
Sungwoong Kim
ArXivPDFHTML

Papers citing "Fast AutoAugment"

50 / 134 papers shown
Title
Augmentation-Free Graph Contrastive Learning with Performance Guarantee
Augmentation-Free Graph Contrastive Learning with Performance Guarantee
Haonan Wang
Jieyu Zhang
Qi Zhu
Wei Huang
30
31
0
11 Apr 2022
Efficient Test-Time Model Adaptation without Forgetting
Efficient Test-Time Model Adaptation without Forgetting
Shuaicheng Niu
Jiaxiang Wu
Yifan Zhang
Yaofo Chen
S. Zheng
P. Zhao
Mingkui Tan
OOD
VLM
TTA
44
319
0
06 Apr 2022
Evolving Neural Selection with Adaptive Regularization
Evolving Neural Selection with Adaptive Regularization
Li Ding
Lee Spector
ODL
25
4
0
04 Apr 2022
Deep AutoAugment
Deep AutoAugment
Yu Zheng
Zikai Zhang
Shen Yan
Mi Zhang
ViT
23
27
0
11 Mar 2022
Neuromorphic Data Augmentation for Training Spiking Neural Networks
Neuromorphic Data Augmentation for Training Spiking Neural Networks
Yuhang Li
Youngeun Kim
Hyoungseob Park
Tamar Geller
Priyadarshini Panda
36
75
0
11 Mar 2022
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
Teppei Suzuki
ViT
26
48
0
25 Feb 2022
Sample Efficiency of Data Augmentation Consistency Regularization
Sample Efficiency of Data Augmentation Consistency Regularization
Shuo Yang
Yijun Dong
Rachel A. Ward
Inderjit S. Dhillon
Sujay Sanghavi
Qi Lei
AAML
31
17
0
24 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
32
8
0
04 Feb 2022
Pushing the limits of self-supervised ResNets: Can we outperform
  supervised learning without labels on ImageNet?
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
Nenad Tomašev
Ioana Bica
Brian McWilliams
Lars Buesing
Razvan Pascanu
Charles Blundell
Jovana Mitrović
SSL
92
81
0
13 Jan 2022
Winning solutions and post-challenge analyses of the ChaLearn AutoDL
  challenge 2019
Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019
Zhengying Liu
Adrien Pavao
Zhen Xu
Sergio Escalera
Fabio Ferreira
...
Peng Wang
Chenglin Wu
Youcheng Xiong
Arber Zela
Yang Zhang
AAML
39
26
0
11 Jan 2022
Avoiding Overfitting: A Survey on Regularization Methods for
  Convolutional Neural Networks
Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks
C. F. G. Santos
João Paulo Papa
35
211
0
10 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
34
26
0
16 Dec 2021
On Automatic Data Augmentation for 3D Point Cloud Classification
On Automatic Data Augmentation for 3D Point Cloud Classification
Wanyue Zhang
Xun Xu
Fayao Liu
Le Zhang
Chuan-Sheng Foo
3DPC
33
4
0
11 Dec 2021
Augment & Valuate : A Data Enhancement Pipeline for Data-Centric AI
Augment & Valuate : A Data Enhancement Pipeline for Data-Centric AI
Youngjune Lee
Oh Joon Kwon
Haejun Lee
Joonyoung Kim
Kangwook Lee
Kee-Eung Kim
16
9
0
07 Dec 2021
Dynamic Data Augmentation with Gating Networks for Time Series
  Recognition
Dynamic Data Augmentation with Gating Networks for Time Series Recognition
Daisuke Oba
Shinnosuke Matsuo
Brian Kenji Iwana
AI4TS
26
1
0
05 Nov 2021
Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
  Semantic Segmentation
Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for Semantic Segmentation
Misgana Negassi
Diane Wagner
A. Reiterer
19
13
0
31 Oct 2021
Learning Partial Equivariances from Data
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
23
28
0
19 Oct 2021
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
BDL
169
411
0
12 Oct 2021
Point Cloud Augmentation with Weighted Local Transformations
Point Cloud Augmentation with Weighted Local Transformations
S. Kim
S. Lee
Dasol Hwang
Jaewon Lee
Seong Jae Hwang
Hyunwoo J. Kim
3DPC
23
60
0
11 Oct 2021
DAAS: Differentiable Architecture and Augmentation Policy Search
DAAS: Differentiable Architecture and Augmentation Policy Search
Xiaoxing Wang
Xiangxiang Chu
Junchi Yan
Xiaokang Yang
24
5
0
30 Sep 2021
DHA: End-to-End Joint Optimization of Data Augmentation Policy,
  Hyper-parameter and Architecture
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
62
10
0
13 Sep 2021
Text AutoAugment: Learning Compositional Augmentation Policy for Text
  Classification
Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification
Shuhuai Ren
Jinchao Zhang
Lei Li
Xu Sun
Jie Zhou
38
31
0
01 Sep 2021
ParamCrop: Parametric Cubic Cropping for Video Contrastive Learning
ParamCrop: Parametric Cubic Cropping for Video Contrastive Learning
Zhiwu Qing
Ziyuan Huang
Shiwei Zhang
Mingqian Tang
Changxin Gao
M. Ang
Ronglei Ji
Nong Sang
45
3
0
24 Aug 2021
Adversarial Reinforced Instruction Attacker for Robust Vision-Language
  Navigation
Adversarial Reinforced Instruction Attacker for Robust Vision-Language Navigation
Bingqian Lin
Yi Zhu
Yanxin Long
Xiaodan Liang
QiXiang Ye
Liang Lin
AAML
43
16
0
23 Jul 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mańdziuk
30
61
0
21 Jul 2021
Fine-Grained AutoAugmentation for Multi-Label Classification
Fine-Grained AutoAugmentation for Multi-Label Classification
Y. Wang
Hesen Chen
Fangyi Zhang
Yaohua Wang
Xiuyu Sun
Ming Lin
Hao Li
32
2
0
12 Jul 2021
Contrastive Multimodal Fusion with TupleInfoNCE
Contrastive Multimodal Fusion with TupleInfoNCE
Yunze Liu
Qingnan Fan
Shanghang Zhang
Hao Dong
Thomas Funkhouser
Li Yi
31
66
0
06 Jul 2021
SCARF: Self-Supervised Contrastive Learning using Random Feature
  Corruption
SCARF: Self-Supervised Contrastive Learning using Random Feature Corruption
Dara Bahri
Heinrich Jiang
Yi Tay
Donald Metzler
SSL
26
164
0
29 Jun 2021
Mean Embeddings with Test-Time Data Augmentation for Ensembling of
  Representations
Mean Embeddings with Test-Time Data Augmentation for Ensembling of Representations
Arsenii Ashukha
Andrei Atanov
Dmitry Vetrov
OOD
FedML
39
6
0
15 Jun 2021
Survey: Image Mixing and Deleting for Data Augmentation
Survey: Image Mixing and Deleting for Data Augmentation
Humza Naveed
Saeed Anwar
Munawar Hayat
Kashif Javed
Ajmal Mian
45
78
0
13 Jun 2021
Contrastive Learning with Stronger Augmentations
Contrastive Learning with Stronger Augmentations
Tianlin Li
Guo-Jun Qi
CLL
22
221
0
15 Apr 2021
Direct Differentiable Augmentation Search
Direct Differentiable Augmentation Search
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
33
33
0
09 Apr 2021
Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Jihwan Bang
Heesu Kim
Y. Yoo
Jung-Woo Ha
Jonghyun Choi
CLL
42
324
0
31 Mar 2021
Scale-aware Automatic Augmentation for Object Detection
Scale-aware Automatic Augmentation for Object Detection
Yukang Chen
Yanwei Li
Tao Kong
Lu Qi
Ruihang Chu
Lei Li
Jiaya Jia
35
49
0
31 Mar 2021
Enabling Data Diversity: Efficient Automatic Augmentation via
  Regularized Adversarial Training
Enabling Data Diversity: Efficient Automatic Augmentation via Regularized Adversarial Training
Yunhe Gao
Zhiqiang Tang
Mu Zhou
Dimitris N. Metaxas
MedIm
22
18
0
30 Mar 2021
Robust and Accurate Object Detection via Adversarial Learning
Robust and Accurate Object Detection via Adversarial Learning
Xiangning Chen
Cihang Xie
Mingxing Tan
Li Zhang
Cho-Jui Hsieh
Boqing Gong
AAML
34
72
0
23 Mar 2021
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
Samuel G. Müller
Frank Hutter
ViT
MQ
24
277
0
18 Mar 2021
Reweighting Augmented Samples by Minimizing the Maximal Expected Loss
Reweighting Augmented Samples by Minimizing the Maximal Expected Loss
Mingyang Yi
Lu Hou
Lifeng Shang
Xin Jiang
Qun Liu
Zhi-Ming Ma
12
19
0
16 Mar 2021
Adaptive Weighting Scheme for Automatic Time-Series Data Augmentation
Adaptive Weighting Scheme for Automatic Time-Series Data Augmentation
Elizabeth Fons
Paula Dawson
Xiao-Jun Zeng
J. Keane
Alexandros Iosifidis
AI4TS
23
23
0
16 Feb 2021
In-Loop Meta-Learning with Gradient-Alignment Reward
In-Loop Meta-Learning with Gradient-Alignment Reward
Samuel G. Müller
André Biedenkapp
Frank Hutter
OOD
28
2
0
05 Feb 2021
Unlearnable Examples: Making Personal Data Unexploitable
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
156
190
0
13 Jan 2021
Mixup Without Hesitation
Mixup Without Hesitation
Hao Yu
Huanyu Wang
Jianxin Wu
VLM
33
21
0
12 Jan 2021
Low-cost and high-performance data augmentation for deep-learning-based
  skin lesion classification
Low-cost and high-performance data augmentation for deep-learning-based skin lesion classification
Shuwei Shen
Mengjuan Xu
Fan Zhang
Pengfei Shao
Honghong Liu
...
Chi Zhang
Peng Liu
Zhihong Zhang
Peng Yao
Ronald X. Xu
25
10
0
07 Jan 2021
AutoDropout: Learning Dropout Patterns to Regularize Deep Networks
AutoDropout: Learning Dropout Patterns to Regularize Deep Networks
Hieu H. Pham
Quoc V. Le
76
56
0
05 Jan 2021
Joint Search of Data Augmentation Policies and Network Architectures
Joint Search of Data Augmentation Policies and Network Architectures
Taiga Kashima
Yoshihiro Yamada
Shunta Saito
3DPC
19
5
0
17 Dec 2020
A Comprehensive Study of Deep Video Action Recognition
A Comprehensive Study of Deep Video Action Recognition
Yi Zhu
Xinyu Li
Chunhui Liu
Mohammadreza Zolfaghari
Yuanjun Xiong
Chongruo Wu
Zhi-Li Zhang
Joseph Tighe
R. Manmatha
Mu Li
VLM
AI4TS
38
185
0
11 Dec 2020
KeepAugment: A Simple Information-Preserving Data Augmentation Approach
KeepAugment: A Simple Information-Preserving Data Augmentation Approach
Chengyue Gong
Dilin Wang
Meng Li
Vikas Chandra
Qiang Liu
33
113
0
23 Nov 2020
SapAugment: Learning A Sample Adaptive Policy for Data Augmentation
SapAugment: Learning A Sample Adaptive Policy for Data Augmentation
Ting-Yao Hu
A. Shrivastava
Jen-Hao Rick Chang
H. Koppula
Stefan Braun
Kyuyeon Hwang
Ozlem Kalinli
Oncel Tuzel
19
16
0
02 Nov 2020
Learning Loss for Test-Time Augmentation
Learning Loss for Test-Time Augmentation
Ildoo Kim
Younghoon Kim
Sungwoong Kim
OOD
26
91
0
22 Oct 2020
Previous
123
Next