Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.13195
Cited By
Test Selection for Deep Learning Systems
30 April 2019
Wei Ma
Mike Papadakis
Anestis Tsakmalis
Maxime Cordy
Yves Le Traon
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Test Selection for Deep Learning Systems"
25 / 25 papers shown
Title
Minimum Uncertainty Based Detection of Adversaries in Deep Neural Networks
Fatemeh Sheikholeslami
Swayambhoo Jain
G. Giannakis
AAML
38
25
0
05 Apr 2019
Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing
Jingyi Wang
Guoliang Dong
Jun Sun
Xinyu Wang
Peixin Zhang
AAML
38
190
0
14 Dec 2018
The Limitations of Model Uncertainty in Adversarial Settings
Kathrin Grosse
David Pfaff
M. Smith
Michael Backes
AAML
34
34
0
06 Dec 2018
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing
Xiaofei Xie
Lei Ma
Felix Juefei Xu
Hongxu Chen
Minhui Xue
Yue Liu
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
58
40
0
04 Sep 2018
Guiding Deep Learning System Testing using Surprise Adequacy
Jinhan Kim
R. Feldt
S. Yoo
AAML
ELM
51
431
0
25 Aug 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
80
1,772
0
30 May 2018
Understanding Measures of Uncertainty for Adversarial Example Detection
Lewis Smith
Y. Gal
UQCV
81
361
0
22 Mar 2018
DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems
Lei Ma
Felix Juefei Xu
Fuyuan Zhang
Jiyuan Sun
Minhui Xue
...
Ting Su
Li Li
Yang Liu
Jianjun Zhao
Yadong Wang
ELM
62
620
0
20 Mar 2018
DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars
Yuchi Tian
Kexin Pei
Suman Jana
Baishakhi Ray
AAML
56
1,353
0
28 Aug 2017
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber
Wieland Brendel
Matthias Bethge
AAML
49
283
0
13 Jul 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
199
5,774
0
14 Jun 2017
Bayesian GAN
Yunus Saatci
A. Wilson
GAN
38
133
0
26 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
103
1,851
0
20 May 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
72
1,357
0
18 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
286
4,667
0
15 Mar 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
74
892
0
01 Mar 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
450
3,124
0
04 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
170
8,513
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
494
5,878
0
08 Jul 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
66
3,947
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
95
4,878
0
14 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
476
9,233
0
06 Jun 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
842
149,474
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
176
18,922
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
943
99,991
0
04 Sep 2014
1