ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.12228
  4. Cited By
Differentiable Visual Computing
v1v2 (latest)

Differentiable Visual Computing

27 April 2019
Tzu-Mao Li
ArXiv (abs)PDFHTML

Papers citing "Differentiable Visual Computing"

44 / 44 papers shown
Title
Shape, Illumination, and Reflectance from Shading
Shape, Illumination, and Reflectance from Shading
Jonathan T. Barron
Jitendra Malik
3DV
40
727
0
07 Oct 2020
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
96
2,499
0
19 Apr 2019
Elimination of All Bad Local Minima in Deep Learning
Elimination of All Bad Local Minima in Deep Learning
Kenji Kawaguchi
L. Kaelbling
78
44
0
02 Jan 2019
A Geometric Theory of Higher-Order Automatic Differentiation
A Geometric Theory of Higher-Order Automatic Differentiation
M. Betancourt
AI4CE
30
25
0
30 Dec 2018
Sampling Can Be Faster Than Optimization
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
70
184
0
20 Nov 2018
Stochastic Gradient Descent with Biased but Consistent Gradient
  Estimators
Stochastic Gradient Descent with Biased but Consistent Gradient Estimators
Jie Chen
Ronny Luss
65
45
0
31 Jul 2018
Efficient Differentiable Programming in a Functional Array-Processing
  Language
Efficient Differentiable Programming in a Functional Array-Processing Language
Amir Shaikhha
Andrew Fitzgibbon
Dimitrios Vytiniotis
S. Jones
Christoph E. Koch
43
65
0
06 Jun 2018
Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code
Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code
Riyadh Baghdadi
Jessica Ray
Malek Ben Romdhane
Emanuele Del Sozzo
Abdurrahman Akkas
Yunming Zhang
Patricia Suriana
Shoaib Kamil
Saman P. Amarasinghe
47
259
0
27 Apr 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
235
3,473
0
09 Mar 2018
Neural 3D Mesh Renderer
Neural 3D Mesh Renderer
Hiroharu Kato
Yoshitaka Ushiku
Tatsuya Harada
3DV
73
1,045
0
20 Nov 2017
Adversarial Attacks Beyond the Image Space
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
83
147
0
20 Nov 2017
DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial
  Networks
DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
Orest Kupyn
Volodymyr Budzan
Mykola Mykhailych
Dmytro Mishkin
Jirí Matas
3DV
88
1,458
0
19 Nov 2017
Tangent: Automatic Differentiation Using Source Code Transformation in
  Python
Tangent: Automatic Differentiation Using Source Code Transformation in Python
B. V. Merrienboer
Alexander B. Wiltschko
D. Moldovan
67
29
0
07 Nov 2017
Material Editing Using a Physically Based Rendering Network
Material Editing Using a Physically Based Rendering Network
Guilin Liu
Duygu Ceylan
Ersin Yumer
Jimei Yang
Jyh-Ming Lien
DiffM
47
94
0
01 Aug 2017
Deep Bilateral Learning for Real-Time Image Enhancement
Deep Bilateral Learning for Real-Time Image Enhancement
Michael Gharbi
Jiawen Chen
Jonathan T. Barron
Samuel W. Hasinoff
F. Durand
3DH
63
735
0
10 Jul 2017
Reversible Jump Metropolis Light Transport using Inverse Mappings
Reversible Jump Metropolis Light Transport using Inverse Mappings
Benedikt Bitterli
Wenzel Jakob
Jan Novák
Wojciech Jarosz
39
57
0
22 Apr 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
55
597
0
13 Apr 2017
Deep Photo Style Transfer
Deep Photo Style Transfer
Fujun Luan
Sylvain Paris
Eli Shechtman
Kavita Bala
GAN
90
686
0
22 Mar 2017
Charted Metropolis Light Transport
Charted Metropolis Light Transport
J. Pantaleoni
OT
38
36
0
16 Dec 2016
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Eddy Ilg
N. Mayer
Tonmoy Saikia
Margret Keuper
Alexey Dosovitskiy
Thomas Brox
3DPC
255
3,081
0
06 Dec 2016
Learning Detailed Face Reconstruction from a Single Image
Learning Detailed Face Reconstruction from a Single Image
Elad Richardson
Matan Sela
Roy Or-El
Ron Kimmel
3DV3DHCVBM
66
339
0
15 Nov 2016
Inverse Diffusion Curves using Shape Optimization
Inverse Diffusion Curves using Shape Optimization
Shuang Zhao
F. Durand
Changxi Zheng
DiffM
30
31
0
10 Oct 2016
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image
  Denoising
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
Peng Sun
W. Zuo
Yunjin Chen
Deyu Meng
Lei Zhang
SupR
142
6,995
0
13 Aug 2016
Colorful Image Colorization
Colorful Image Colorization
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
133
3,530
0
28 Mar 2016
A Versatile Scene Model with Differentiable Visibility Applied to
  Generative Pose Estimation
A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation
Helge Rhodin
Nadia Robertini
Christian Richardt
Hans-Peter Seidel
Christian Theobalt
3DV3DH
71
97
0
11 Feb 2016
Sub-Sampled Newton Methods II: Local Convergence Rates
Sub-Sampled Newton Methods II: Local Convergence Rates
Farbod Roosta-Khorasani
Michael W. Mahoney
63
84
0
18 Jan 2016
Sub-Sampled Newton Methods I: Globally Convergent Algorithms
Sub-Sampled Newton Methods I: Globally Convergent Algorithms
Farbod Roosta-Khorasani
Michael W. Mahoney
67
90
0
18 Jan 2016
The Fast Bilateral Solver
The Fast Bilateral Solver
Jonathan T. Barron
Ben Poole
220
372
0
10 Nov 2015
Train faster, generalize better: Stability of stochastic gradient
  descent
Train faster, generalize better: Stability of stochastic gradient descent
Moritz Hardt
Benjamin Recht
Y. Singer
116
1,241
0
03 Sep 2015
Spatial Transformer Networks
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
302
7,387
0
05 Jun 2015
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor
  Decomposition
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
140
1,058
0
06 Mar 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
227
945
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
277
19,066
0
20 Dec 2014
cuDNN: Efficient Primitives for Deep Learning
cuDNN: Efficient Primitives for Deep Learning
Sharan Chetlur
Cliff Woolley
Philippe Vandermersch
Jonathan M. Cohen
J. Tran
Bryan Catanzaro
Evan Shelhamer
133
1,848
0
03 Oct 2014
Hamiltonian Monte Carlo Without Detailed Balance
Hamiltonian Monte Carlo Without Detailed Balance
Jascha Narain Sohl-Dickstein
M. Mudigonda
M. DeWeese
54
66
0
18 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.6K
100,386
0
04 Sep 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLMBDL3DV
274
14,711
0
20 Jun 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
109
910
0
17 Feb 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
275
14,927
1
21 Dec 2013
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
321
1,249
0
10 Sep 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
155
6,625
0
22 Dec 2012
Estimating the Hessian by Back-propagating Curvature
Estimating the Hessian by Back-propagating Curvature
James Martens
Ilya Sutskever
Kevin Swersky
86
80
0
27 Jun 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
292
3,279
0
09 Jun 2012
1