Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.11238
Cited By
Unsupervised Label Noise Modeling and Loss Correction
25 April 2019
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unsupervised Label Noise Modeling and Loss Correction"
50 / 115 papers shown
Title
Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets
Yingsong Huang
Bing Bai
Shengwei Zhao
Kun Bai
Fei-Yue Wang
NoLa
28
43
0
12 Jul 2022
Eliciting and Learning with Soft Labels from Every Annotator
K. M. Collins
Umang Bhatt
Adrian Weller
19
44
0
02 Jul 2022
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State
Xinshao Wang
Yang Hua
Elyor Kodirov
S. Mukherjee
David A. Clifton
N. Robertson
19
6
0
30 Jun 2022
Robust Meta-learning with Sampling Noise and Label Noise via Eigen-Reptile
Dong Chen
Lingfei Wu
Siliang Tang
Xiao Yun
Bo Long
Yueting Zhuang
VLM
NoLa
25
9
0
04 Jun 2022
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of Black-Box Predictors
Jianfei Yang
Xiangyu Peng
Kaidi Wang
Zheng Hua Zhu
Jiashi Feng
Lihua Xie
Yang You
29
27
0
28 May 2022
Boosting Facial Expression Recognition by A Semi-Supervised Progressive Teacher
Jing Jiang
Weihong Deng
29
23
0
28 May 2022
ReSmooth: Detecting and Utilizing OOD Samples when Training with Data Augmentation
Chenyang Wang
Junjun Jiang
Xiong Zhou
Xianming Liu
32
3
0
25 May 2022
FedRN: Exploiting k-Reliable Neighbors Towards Robust Federated Learning
Sangmook Kim
Wonyoung Shin
Soohyuk Jang
Hwanjun Song
Se-Young Yun
29
2
0
03 May 2022
SELC: Self-Ensemble Label Correction Improves Learning with Noisy Labels
Yangdi Lu
Wenbo He
NoLa
37
39
0
02 May 2022
Towards Robust Adaptive Object Detection under Noisy Annotations
Xinyu Liu
Wuyang Li
Qiushi Yang
Baopu Li
Yixuan Yuan
17
29
0
06 Apr 2022
Self-Distillation from the Last Mini-Batch for Consistency Regularization
Yiqing Shen
Liwu Xu
Yuzhe Yang
Yaqian Li
Yandong Guo
15
60
0
30 Mar 2022
Agreement or Disagreement in Noise-tolerant Mutual Learning?
Jiarun Liu
Daguang Jiang
Yukun Yang
Ruirui Li
NoLa
23
2
0
29 Mar 2022
UNICON: Combating Label Noise Through Uniform Selection and Contrastive Learning
Nazmul Karim
Mamshad Nayeem Rizve
Nazanin Rahnavard
Ajmal Saeed Mian
M. Shah
NoLa
30
98
0
28 Mar 2022
Selective-Supervised Contrastive Learning with Noisy Labels
Shikun Li
Xiaobo Xia
Shiming Ge
Tongliang Liu
NoLa
24
172
0
08 Mar 2022
L2B: Learning to Bootstrap Robust Models for Combating Label Noise
Yuyin Zhou
Xianhang Li
Fengze Liu
Qingyue Wei
Xuxi Chen
Lequan Yu
Cihang Xie
M. Lungren
Lei Xing
NoLa
41
3
0
09 Feb 2022
Learning with Neighbor Consistency for Noisy Labels
Ahmet Iscen
Jack Valmadre
Anurag Arnab
Cordelia Schmid
NoLa
41
75
0
04 Feb 2022
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Deebul Nair
Nico Hochgeschwender
Miguel A. Olivares-Mendez
OOD
30
7
0
03 Feb 2022
Automatic Pharma News Categorization
S. Adaszewski
P. Kuner
Ralf J. Jaeger
OOD
16
3
0
28 Dec 2021
Open-Vocabulary Instance Segmentation via Robust Cross-Modal Pseudo-Labeling
Dat T. Huynh
Jason Kuen
Zhe-nan Lin
Jiuxiang Gu
Ehsan Elhamifar
ISeg
VLM
27
83
0
24 Nov 2021
SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise
Chen Feng
Georgios Tzimiropoulos
Ioannis Patras
NoLa
24
18
0
22 Nov 2021
Constrained Instance and Class Reweighting for Robust Learning under Label Noise
Abhishek Kumar
Ehsan Amid
NoLa
29
19
0
09 Nov 2021
Sample Selection for Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
21
61
0
27 Oct 2021
Addressing out-of-distribution label noise in webly-labelled data
Paul Albert
Diego Ortego
Eric Arazo
Noel E. O'Connor
Kevin McGuinness
NoLa
16
16
0
26 Oct 2021
PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels
F. Cordeiro
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
30
18
0
22 Oct 2021
One-Step Abductive Multi-Target Learning with Diverse Noisy Samples and Its Application to Tumour Segmentation for Breast Cancer
Yongquan Yang
Fengling Li
Yani Wei
Jie Chen
Ning Chen
Mohammad H. Alobaidi
Hong Bu
26
8
0
20 Oct 2021
Clean or Annotate: How to Spend a Limited Data Collection Budget
Derek Chen
Zhou Yu
Samuel R. Bowman
35
13
0
15 Oct 2021
Continual Learning on Noisy Data Streams via Self-Purified Replay
C. Kim
Jinseo Jeong
Sang-chul Moon
Gunhee Kim
CLL
40
39
0
14 Oct 2021
Towards Understanding the Data Dependency of Mixup-style Training
Muthuraman Chidambaram
Xiang Wang
Yuzheng Hu
Chenwei Wu
Rong Ge
UQCV
47
24
0
14 Oct 2021
Knowledge Distillation with Noisy Labels for Natural Language Understanding
Shivendra Bhardwaj
Abbas Ghaddar
Ahmad Rashid
Khalil Bibi
Cheng-huan Li
A. Ghodsi
Philippe Langlais
Mehdi Rezagholizadeh
19
1
0
21 Sep 2021
A robust approach for deep neural networks in presence of label noise: relabelling and filtering instances during training
A. Gómez-Ríos
Julián Luengo
Francisco Herrera
OOD
NoLa
19
0
0
08 Sep 2021
NGC: A Unified Framework for Learning with Open-World Noisy Data
Zhi-Fan Wu
Tong Wei
Jianwen Jiang
Chaojie Mao
Mingqian Tang
Yu-Feng Li
11
80
0
25 Aug 2021
Co-learning: Learning from Noisy Labels with Self-supervision
Cheng Tan
Jun-Xiong Xia
Lirong Wu
Stan Z. Li
NoLa
76
116
0
05 Aug 2021
Learning with Noisy Labels for Robust Point Cloud Segmentation
Shuquan Ye
Dongdong Chen
Songfang Han
Jing Liao
3DPC
31
51
0
29 Jul 2021
Mitigating Memorization in Sample Selection for Learning with Noisy Labels
Kyeongbo Kong
Junggi Lee
Youngchul Kwak
Young-Rae Cho
Seong-Eun Kim
Woo‐Jin Song
NoLa
18
0
0
08 Jul 2021
Adaptive Sample Selection for Robust Learning under Label Noise
Deep Patel
P. Sastry
OOD
NoLa
28
29
0
29 Jun 2021
SENT: Sentence-level Distant Relation Extraction via Negative Training
Ruotian Ma
Tao Gui
Linyang Li
Qi Zhang
Yaqian Zhou
Xuanjing Huang
22
28
0
22 Jun 2021
Towards Understanding Deep Learning from Noisy Labels with Small-Loss Criterion
Xian-Jin Gui
Wei Wang
Zhang-Hao Tian
NoLa
27
44
0
17 Jun 2021
Self-paced Resistance Learning against Overfitting on Noisy Labels
Xiaoshuang Shi
Zhenhua Guo
Fuyong Xing
Yun Liang
Xiaofeng Zhu
NoLa
21
20
0
07 May 2021
Contrastive Learning Improves Model Robustness Under Label Noise
Aritra Ghosh
Andrew S. Lan
NoLa
21
58
0
19 Apr 2021
Noisy-Labeled NER with Confidence Estimation
Kun Liu
Yao Fu
Chuanqi Tan
Mosha Chen
Ningyu Zhang
Songfang Huang
Sheng Gao
NoLa
30
60
0
09 Apr 2021
Learning from Noisy Labels via Dynamic Loss Thresholding
Hao Yang
Youzhi Jin
Zi-Hua Li
Deng-Bao Wang
Lei Miao
Xin Geng
Min-Ling Zhang
NoLa
AI4CE
26
6
0
01 Apr 2021
Learning from Pixel-Level Label Noise: A New Perspective for Semi-Supervised Semantic Segmentation
Rumeng Yi
Yaping Huang
Q. Guan
Mengyang Pu
Runsheng Zhang
NoLa
28
27
0
26 Mar 2021
Jo-SRC: A Contrastive Approach for Combating Noisy Labels
Yazhou Yao
Zeren Sun
Chuanyi Zhang
Fumin Shen
Qi Wu
Jian Zhang
Zhenmin Tang
NoLa
33
133
0
24 Mar 2021
On the Robustness of Monte Carlo Dropout Trained with Noisy Labels
Purvi Goel
Li Chen
NoLa
30
15
0
22 Mar 2021
LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment
F. Cordeiro
Ragav Sachdeva
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
11
77
0
06 Mar 2021
Unified Robust Training for Graph NeuralNetworks against Label Noise
Yayong Li
Jie Yin
Ling-Hao Chen
NoLa
24
29
0
05 Mar 2021
DST: Data Selection and joint Training for Learning with Noisy Labels
Yi Wei
Xue Mei
Xin Liu
Pengxiang Xu
NoLa
24
3
0
01 Mar 2021
Typing Errors in Factual Knowledge Graphs: Severity and Possible Ways Out
Peiran Yao
Denilson Barbosa
31
6
0
03 Feb 2021
Iterative label cleaning for transductive and semi-supervised few-shot learning
Michalis Lazarou
Tania Stathaki
Yannis Avrithis
40
61
0
14 Dec 2020
Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
40
122
0
10 Dec 2020
Previous
1
2
3
Next