ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07451
  4. Cited By
Counterfactual Visual Explanations

Counterfactual Visual Explanations

16 April 2019
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
    CML
ArXivPDFHTML

Papers citing "Counterfactual Visual Explanations"

50 / 158 papers shown
Title
Uncertainty Estimation and Out-of-Distribution Detection for
  Counterfactual Explanations: Pitfalls and Solutions
Uncertainty Estimation and Out-of-Distribution Detection for Counterfactual Explanations: Pitfalls and Solutions
Eoin Delaney
Derek Greene
Mark T. Keane
38
24
0
20 Jul 2021
Exploring the Efficacy of Automatically Generated Counterfactuals for
  Sentiment Analysis
Exploring the Efficacy of Automatically Generated Counterfactuals for Sentiment Analysis
Linyi Yang
Jiazheng Li
Padraig Cunningham
Yue Zhang
Barry Smyth
Ruihai Dong
27
47
0
29 Jun 2021
How Well do Feature Visualizations Support Causal Understanding of CNN
  Activations?
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
Roland S. Zimmermann
Judy Borowski
Robert Geirhos
Matthias Bethge
Thomas S. A. Wallis
Wieland Brendel
FAtt
49
31
0
23 Jun 2021
Keep CALM and Improve Visual Feature Attribution
Keep CALM and Improve Visual Feature Attribution
Jae Myung Kim
Junsuk Choe
Zeynep Akata
Seong Joon Oh
FAtt
350
20
0
15 Jun 2021
Conterfactual Generative Zero-Shot Semantic Segmentation
Conterfactual Generative Zero-Shot Semantic Segmentation
Feihong Shen
Jun Liu
Ping Hu
BDL
39
9
0
11 Jun 2021
3DB: A Framework for Debugging Computer Vision Models
3DB: A Framework for Debugging Computer Vision Models
Guillaume Leclerc
Hadi Salman
Andrew Ilyas
Sai H. Vemprala
Logan Engstrom
...
Pengchuan Zhang
Shibani Santurkar
Greg Yang
Ashish Kapoor
Aleksander Madry
40
40
0
07 Jun 2021
A Review on Explainability in Multimodal Deep Neural Nets
A Review on Explainability in Multimodal Deep Neural Nets
Gargi Joshi
Rahee Walambe
K. Kotecha
34
140
0
17 May 2021
Leveraging Sparse Linear Layers for Debuggable Deep Networks
Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong
Shibani Santurkar
Aleksander Madry
FAtt
22
88
0
11 May 2021
Two4Two: Evaluating Interpretable Machine Learning - A Synthetic Dataset
  For Controlled Experiments
Two4Two: Evaluating Interpretable Machine Learning - A Synthetic Dataset For Controlled Experiments
M. Schuessler
Philipp Weiß
Leon Sixt
43
3
0
06 May 2021
Explaining in Style: Training a GAN to explain a classifier in
  StyleSpace
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Oran Lang
Yossi Gandelsman
Michal Yarom
Yoav Wald
G. Elidan
...
William T. Freeman
Phillip Isola
Amir Globerson
Michal Irani
Inbar Mosseri
GAN
50
152
0
27 Apr 2021
Revisiting The Evaluation of Class Activation Mapping for
  Explainability: A Novel Metric and Experimental Analysis
Revisiting The Evaluation of Class Activation Mapping for Explainability: A Novel Metric and Experimental Analysis
Samuele Poppi
Marcella Cornia
Lorenzo Baraldi
Rita Cucchiara
FAtt
131
33
0
20 Apr 2021
Contrastive Reasoning in Neural Networks
Contrastive Reasoning in Neural Networks
Mohit Prabhushankar
Ghassan AlRegib
25
10
0
23 Mar 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
35
25
0
20 Mar 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable
  Explanations
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
42
55
0
18 Mar 2021
Axiomatic Explanations for Visual Search, Retrieval, and Similarity
  Learning
Axiomatic Explanations for Visual Search, Retrieval, and Similarity Learning
Mark Hamilton
Scott M. Lundberg
Lei Zhang
Stephanie Fu
William T. Freeman
FAtt
35
10
0
28 Feb 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to
  Rectify in the Evaluation of Counterfactual XAI Techniques
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
32
146
0
26 Feb 2021
Intuitively Assessing ML Model Reliability through Example-Based
  Explanations and Editing Model Inputs
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
45
25
0
17 Feb 2021
Mitigating belief projection in explainable artificial intelligence via
  Bayesian Teaching
Mitigating belief projection in explainable artificial intelligence via Bayesian Teaching
Scott Cheng-Hsin Yang
Wai Keen Vong
Ravi B. Sojitra
Tomas Folke
Patrick Shafto
24
42
0
07 Feb 2021
EUCA: the End-User-Centered Explainable AI Framework
EUCA: the End-User-Centered Explainable AI Framework
Weina Jin
Jianyu Fan
D. Gromala
Philippe Pasquier
Ghassan Hamarneh
42
24
0
04 Feb 2021
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders
  of Interpretable Machine Learning and their Needs
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of Interpretable Machine Learning and their Needs
Harini Suresh
Steven R. Gomez
K. Nam
Arvind Satyanarayan
34
126
0
24 Jan 2021
Explainability of deep vision-based autonomous driving systems: Review
  and challenges
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
53
170
0
13 Jan 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
70
100
0
11 Jan 2021
Explaining NLP Models via Minimal Contrastive Editing (MiCE)
Explaining NLP Models via Minimal Contrastive Editing (MiCE)
Alexis Ross
Ana Marasović
Matthew E. Peters
43
121
0
27 Dec 2020
GANterfactual - Counterfactual Explanations for Medical Non-Experts
  using Generative Adversarial Learning
GANterfactual - Counterfactual Explanations for Medical Non-Experts using Generative Adversarial Learning
Silvan Mertes
Tobias Huber
Katharina Weitz
Alexander Heimerl
Elisabeth André
GAN
AAML
MedIm
39
69
0
22 Dec 2020
Understanding Learned Reward Functions
Understanding Learned Reward Functions
Eric J. Michaud
Adam Gleave
Stuart J. Russell
XAI
OffRL
30
33
0
10 Dec 2020
Understanding Failures of Deep Networks via Robust Feature Extraction
Understanding Failures of Deep Networks via Robust Feature Extraction
Sahil Singla
Besmira Nushi
S. Shah
Ece Kamar
Eric Horvitz
FAtt
28
83
0
03 Dec 2020
Empowering Things with Intelligence: A Survey of the Progress,
  Challenges, and Opportunities in Artificial Intelligence of Things
Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things
Jing Zhang
Dacheng Tao
45
463
0
17 Nov 2020
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
28
164
0
20 Oct 2020
Counterfactual Variable Control for Robust and Interpretable Question
  Answering
Counterfactual Variable Control for Robust and Interpretable Question Answering
S. Yu
Yulei Niu
Shuohang Wang
Jing Jiang
Qianru Sun
AAML
OOD
44
9
0
12 Oct 2020
Instance-based Counterfactual Explanations for Time Series
  Classification
Instance-based Counterfactual Explanations for Time Series Classification
Eoin Delaney
Derek Greene
Mark T. Keane
CML
AI4TS
24
89
0
28 Sep 2020
Counterfactual Explanation and Causal Inference in Service of Robustness
  in Robot Control
Counterfactual Explanation and Causal Inference in Service of Robustness in Robot Control
Simón C. Smith
S. Ramamoorthy
26
13
0
18 Sep 2020
Evaluating and Mitigating Bias in Image Classifiers: A Causal
  Perspective Using Counterfactuals
Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals
Saloni Dash
V. Balasubramanian
Amit Sharma
CML
27
65
0
17 Sep 2020
SCOUTER: Slot Attention-based Classifier for Explainable Image
  Recognition
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition
Liangzhi Li
Bowen Wang
Manisha Verma
Yuta Nakashima
R. Kawasaki
Hajime Nagahara
OCL
23
49
0
14 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
46
62
0
11 Sep 2020
Counterfactual Explanation Based on Gradual Construction for Deep
  Networks
Counterfactual Explanation Based on Gradual Construction for Deep Networks
Hong G Jung
Sin-Han Kang
Hee-Dong Kim
Dong-Ok Won
Seong-Whan Lee
OOD
FAtt
25
22
0
05 Aug 2020
Contrastive Explanations in Neural Networks
Contrastive Explanations in Neural Networks
Mohit Prabhushankar
Gukyeong Kwon
Dogancan Temel
Ghassan AlRegib
FAtt
18
33
0
01 Aug 2020
An Empirical Study on Robustness to Spurious Correlations using
  Pre-trained Language Models
An Empirical Study on Robustness to Spurious Correlations using Pre-trained Language Models
Lifu Tu
Garima Lalwani
Spandana Gella
He He
LRM
33
184
0
14 Jul 2020
Fast Real-time Counterfactual Explanations
Fast Real-time Counterfactual Explanations
Yunxia Zhao
17
15
0
11 Jul 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
37
19
0
26 Jun 2020
Counterfactual VQA: A Cause-Effect Look at Language Bias
Counterfactual VQA: A Cause-Effect Look at Language Bias
Yulei Niu
Kaihua Tang
Hanwang Zhang
Zhiwu Lu
Xiansheng Hua
Ji-Rong Wen
CML
61
395
0
08 Jun 2020
CausaLM: Causal Model Explanation Through Counterfactual Language Models
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder
Nadav Oved
Uri Shalit
Roi Reichart
CML
LRM
56
157
0
27 May 2020
A robust algorithm for explaining unreliable machine learning survival
  models using the Kolmogorov-Smirnov bounds
A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds
M. Kovalev
Lev V. Utkin
AAML
43
31
0
05 May 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
31
8
0
23 Apr 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
30
81
0
16 Apr 2020
Adversarial Robustness on In- and Out-Distribution Improves
  Explainability
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
80
99
0
20 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and
  Evaluation
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
32
213
0
09 Mar 2020
Evaluating Weakly Supervised Object Localization Methods Right
Evaluating Weakly Supervised Object Localization Methods Right
Junsuk Choe
Seong Joon Oh
Seungho Lee
Sanghyuk Chun
Zeynep Akata
Hyunjung Shim
WSOL
303
186
0
21 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
45
301
0
08 Jan 2020
Degenerative Adversarial NeuroImage Nets for Brain Scan Simulations:
  Application in Ageing and Dementia
Degenerative Adversarial NeuroImage Nets for Brain Scan Simulations: Application in Ageing and Dementia
D. Ravì
Stefano B. Blumberg
S. Ingala
F. Barkhof
Daniel C. Alexander
N. Oxtoby
MedIm
29
31
0
03 Dec 2019
Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling
Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling
Tsu-Jui Fu
Xinze Wang
Matthew F. Peterson
Scott T. Grafton
Miguel P. Eckstein
William Yang Wang
57
41
0
17 Nov 2019
Previous
1234
Next