ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07451
  4. Cited By
Counterfactual Visual Explanations

Counterfactual Visual Explanations

16 April 2019
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
    CML
ArXivPDFHTML

Papers citing "Counterfactual Visual Explanations"

50 / 158 papers shown
Title
Finding Differences Between Transformers and ConvNets Using
  Counterfactual Simulation Testing
Finding Differences Between Transformers and ConvNets Using Counterfactual Simulation Testing
Nataniel Ruiz
Sarah Adel Bargal
Cihang Xie
Kate Saenko
Stan Sclaroff
ViT
44
5
0
29 Nov 2022
OCTET: Object-aware Counterfactual Explanations
OCTET: Object-aware Counterfactual Explanations
Mehdi Zemni
Mickaël Chen
Éloi Zablocki
H. Ben-younes
Patrick Pérez
Matthieu Cord
AAML
34
29
0
22 Nov 2022
Clarity: an improved gradient method for producing quality visual
  counterfactual explanations
Clarity: an improved gradient method for producing quality visual counterfactual explanations
Claire Theobald
Frédéric Pennerath
Brieuc Conan-Guez
Miguel Couceiro
Amedeo Napoli
BDL
46
0
0
22 Nov 2022
Explainability Via Causal Self-Talk
Explainability Via Causal Self-Talk
Nicholas A. Roy
Junkyung Kim
Neil C. Rabinowitz
CML
29
7
0
17 Nov 2022
Data-Centric Debugging: mitigating model failures via targeted data
  collection
Data-Centric Debugging: mitigating model failures via targeted data collection
Sahil Singla
Atoosa Malemir Chegini
Mazda Moayeri
Soheil Feiz
29
4
0
17 Nov 2022
Diffusion Visual Counterfactual Explanations
Diffusion Visual Counterfactual Explanations
Maximilian Augustin
Valentyn Boreiko
Francesco Croce
Matthias Hein
DiffM
BDL
34
68
0
21 Oct 2022
Joint localization and classification of breast tumors on ultrasound
  images using a novel auxiliary attention-based framework
Joint localization and classification of breast tumors on ultrasound images using a novel auxiliary attention-based framework
Zong Fan
Ping Gong
Shanshan Tang
Christine U. Lee
Xiaohui Zhang
P. Song
Shigao Chen
Hua Li
21
2
0
11 Oct 2022
"Help Me Help the AI": Understanding How Explainability Can Support
  Human-AI Interaction
"Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction
Sunnie S. Y. Kim
E. A. Watkins
Olga Russakovsky
Ruth C. Fong
Andrés Monroy-Hernández
45
109
0
02 Oct 2022
Causal Proxy Models for Concept-Based Model Explanations
Causal Proxy Models for Concept-Based Model Explanations
Zhengxuan Wu
Karel DÓosterlinck
Atticus Geiger
Amir Zur
Christopher Potts
MILM
83
35
0
28 Sep 2022
Meta-Causal Feature Learning for Out-of-Distribution Generalization
Meta-Causal Feature Learning for Out-of-Distribution Generalization
Yuqing Wang
Xiangxian Li
Zhuang Qi
Jingyu Li
Xuelong Li
Xiangxu Meng
Lei Meng
OOD
OODD
BDL
44
25
0
22 Aug 2022
Counterfactual Image Synthesis for Discovery of Personalized Predictive
  Image Markers
Counterfactual Image Synthesis for Discovery of Personalized Predictive Image Markers
Amar Kumar
Anjun Hu
Brennan Nichyporuk
Jean-Pierre Falet
Douglas L. Arnold
Sotirios A. Tsaftaris
Tal Arbel
MedIm
32
10
0
03 Aug 2022
Unit Testing for Concepts in Neural Networks
Unit Testing for Concepts in Neural Networks
Charles Lovering
Ellie Pavlick
25
28
0
28 Jul 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
43
28
0
06 Jul 2022
Pretraining on Interactions for Learning Grounded Affordance
  Representations
Pretraining on Interactions for Learning Grounded Affordance Representations
Jack Merullo
Dylan Ebert
Carsten Eickhoff
Ellie Pavlick
29
4
0
05 Jul 2022
GLANCE: Global to Local Architecture-Neutral Concept-based Explanations
GLANCE: Global to Local Architecture-Neutral Concept-based Explanations
Avinash Kori
Ben Glocker
Francesca Toni
35
6
0
05 Jul 2022
Hierarchical Symbolic Reasoning in Hyperbolic Space for Deep
  Discriminative Models
Hierarchical Symbolic Reasoning in Hyperbolic Space for Deep Discriminative Models
Ainkaran Santhirasekaram
Avinash Kori
A. Rockall
Mathias Winkler
Francesca Toni
Ben Glocker
FAtt
47
4
0
05 Jul 2022
Evaluating the Explainers: Black-Box Explainable Machine Learning for
  Student Success Prediction in MOOCs
Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs
Vinitra Swamy
Bahar Radmehr
Natasa Krco
Mirko Marras
Tanja Käser
FAtt
ELM
19
40
0
01 Jul 2022
Distilling Model Failures as Directions in Latent Space
Distilling Model Failures as Directions in Latent Space
Saachi Jain
Hannah Lawrence
Ankur Moitra
Aleksander Madry
23
90
0
29 Jun 2022
Cardinality-Minimal Explanations for Monotonic Neural Networks
Cardinality-Minimal Explanations for Monotonic Neural Networks
Ouns El Harzli
Bernardo Cuenca Grau
Ian Horrocks
FAtt
42
5
0
19 May 2022
Sparse Visual Counterfactual Explanations in Image Space
Sparse Visual Counterfactual Explanations in Image Space
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDL
CML
37
26
0
16 May 2022
Gradient-based Counterfactual Explanations using Tractable Probabilistic
  Models
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models
Xiaoting Shao
Kristian Kersting
BDL
27
1
0
16 May 2022
"If it didn't happen, why would I change my decision?": How Judges
  Respond to Counterfactual Explanations for the Public Safety Assessment
"If it didn't happen, why would I change my decision?": How Judges Respond to Counterfactual Explanations for the Public Safety Assessment
Yaniv Yacoby
Ben Green
Christopher L. Griffin
Finale Doshi Velez
26
16
0
11 May 2022
Features of Explainability: How users understand counterfactual and
  causal explanations for categorical and continuous features in XAI
Features of Explainability: How users understand counterfactual and causal explanations for categorical and continuous features in XAI
Greta Warren
Mark T. Keane
R. Byrne
CML
32
22
0
21 Apr 2022
Example-based Explanations with Adversarial Attacks for Respiratory
  Sound Analysis
Example-based Explanations with Adversarial Attacks for Respiratory Sound Analysis
Yi Chang
Zhao Ren
THANH VAN NGUYEN
Wolfgang Nejdl
Björn W. Schuller
AAML
36
14
0
30 Mar 2022
Diffusion Models for Counterfactual Explanations
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
40
55
0
29 Mar 2022
On the Computation of Necessary and Sufficient Explanations
On the Computation of Necessary and Sufficient Explanations
Adnan Darwiche
Chunxi Ji
FAtt
30
19
0
20 Mar 2022
Human-Centered Concept Explanations for Neural Networks
Human-Centered Concept Explanations for Neural Networks
Chih-Kuan Yeh
Been Kim
Pradeep Ravikumar
FAtt
47
26
0
25 Feb 2022
First is Better Than Last for Language Data Influence
First is Better Than Last for Language Data Influence
Chih-Kuan Yeh
Ankur Taly
Mukund Sundararajan
Frederick Liu
Pradeep Ravikumar
TDI
39
20
0
24 Feb 2022
Diffusion Causal Models for Counterfactual Estimation
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
40
70
0
21 Feb 2022
Evaluation Methods and Measures for Causal Learning Algorithms
Evaluation Methods and Measures for Causal Learning Algorithms
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CML
ELM
31
51
0
07 Feb 2022
When less is more: Simplifying inputs aids neural network understanding
When less is more: Simplifying inputs aids neural network understanding
R. Schirrmeister
Rosanne Liu
Sara Hooker
T. Ball
34
5
0
14 Jan 2022
Towards Relatable Explainable AI with the Perceptual Process
Towards Relatable Explainable AI with the Perceptual Process
Wencan Zhang
Brian Y. Lim
AAML
XAI
32
62
0
28 Dec 2021
On Causally Disentangled Representations
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
39
21
0
10 Dec 2021
HIVE: Evaluating the Human Interpretability of Visual Explanations
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Making a Bird AI Expert Work for You and Me
Making a Bird AI Expert Work for You and Me
Dongliang Chang
Kaiyue Pang
Ruoyi Du
Zhanyu Ma
Yi-Zhe Song
Jun Guo
70
10
0
06 Dec 2021
Editing a classifier by rewriting its prediction rules
Editing a classifier by rewriting its prediction rules
Shibani Santurkar
Dimitris Tsipras
Mahalaxmi Elango
David Bau
Antonio Torralba
Aleksander Madry
KELM
188
89
0
02 Dec 2021
Matching Learned Causal Effects of Neural Networks with Domain Priors
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
36
13
0
24 Nov 2021
STEEX: Steering Counterfactual Explanations with Semantics
STEEX: Steering Counterfactual Explanations with Semantics
P. Jacob
Éloi Zablocki
H. Ben-younes
Mickaël Chen
P. Pérez
Matthieu Cord
19
43
0
17 Nov 2021
Towards Interpretability of Speech Pause in Dementia Detection using
  Adversarial Learning
Towards Interpretability of Speech Pause in Dementia Detection using Adversarial Learning
Youxiang Zhu
Bang Tran
Xiaohui Liang
J. Batsis
R. Roth
AAML
24
6
0
14 Nov 2021
On Quantitative Evaluations of Counterfactuals
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
26
10
0
30 Oct 2021
From Intrinsic to Counterfactual: On the Explainability of
  Contextualized Recommender Systems
From Intrinsic to Counterfactual: On the Explainability of Contextualized Recommender Systems
Yao Zhou
Haonan Wang
Jingrui He
Haixun Wang
37
15
0
28 Oct 2021
Designing Counterfactual Generators using Deep Model Inversion
Designing Counterfactual Generators using Deep Model Inversion
Jayaraman J. Thiagarajan
V. Narayanaswamy
Deepta Rajan
J. Liang
Akshay S. Chaudhari
A. Spanias
DiffM
20
22
0
29 Sep 2021
Discriminative Attribution from Counterfactuals
Discriminative Attribution from Counterfactuals
N. Eckstein
A. S. Bates
G. Jefferis
Jan Funke
FAtt
CML
27
1
0
28 Sep 2021
Counterfactual Evaluation for Explainable AI
Counterfactual Evaluation for Explainable AI
Yingqiang Ge
Shuchang Liu
Zelong Li
Shuyuan Xu
Shijie Geng
Yunqi Li
Juntao Tan
Fei Sun
Yongfeng Zhang
CML
38
14
0
05 Sep 2021
Top-N Recommendation with Counterfactual User Preference Simulation
Top-N Recommendation with Counterfactual User Preference Simulation
Mengyue Yang
Quanyu Dai
Zhenhua Dong
Xu Chen
Xiuqiang He
Jun Wang
CML
BDL
50
65
0
02 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
69
520
0
31 Aug 2021
Counterfactual Explainable Recommendation
Counterfactual Explainable Recommendation
Juntao Tan
Shuyuan Xu
Yingqiang Ge
Yunqi Li
Xu Chen
Yongfeng Zhang
CML
40
141
0
24 Aug 2021
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
  and Survey
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey
Richard Dazeley
Peter Vamplew
Francisco Cruz
32
61
0
20 Aug 2021
Improving Visualization Interpretation Using Counterfactuals
Improving Visualization Interpretation Using Counterfactuals
Smiti Kaul
D. Borland
Nan Cao
David Gotz
CML
10
17
0
21 Jul 2021
DRIVE: Deep Reinforced Accident Anticipation with Visual Explanation
DRIVE: Deep Reinforced Accident Anticipation with Visual Explanation
Wentao Bao
Qi Yu
Yu Kong
FAtt
29
39
0
21 Jul 2021
Previous
1234
Next