ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07272
  4. Cited By
Introduction to Multi-Armed Bandits

Introduction to Multi-Armed Bandits

15 April 2019
Aleksandrs Slivkins
ArXivPDFHTML

Papers citing "Introduction to Multi-Armed Bandits"

50 / 164 papers shown
Title
Rotting Infinitely Many-armed Bandits
Rotting Infinitely Many-armed Bandits
Jung-hun Kim
Milan Vojnović
Se-Young Yun
24
4
0
31 Jan 2022
Distributed Bandits with Heterogeneous Agents
Distributed Bandits with Heterogeneous Agents
Lin Yang
Y. Chen
Mohammad Hajiesmaili
John C. S. Lui
Don Towsley
53
21
0
23 Jan 2022
BandMaxSAT: A Local Search MaxSAT Solver with Multi-armed Bandit
BandMaxSAT: A Local Search MaxSAT Solver with Multi-armed Bandit
Jiongzhi Zheng
Kun He
Jianrong Zhou
Yan Jin
ChuMin Li
F. Manyà
23
13
0
14 Jan 2022
Collective Autoscaling for Cloud Microservices
Collective Autoscaling for Cloud Microservices
Vighnesh Sachidananda
Anirudh Sivaraman
22
5
0
01 Dec 2021
Efficient and Optimal Algorithms for Contextual Dueling Bandits under
  Realizability
Efficient and Optimal Algorithms for Contextual Dueling Bandits under Realizability
Aadirupa Saha
A. Krishnamurthy
42
35
0
24 Nov 2021
Safe Data Collection for Offline and Online Policy Learning
Safe Data Collection for Offline and Online Policy Learning
Ruihao Zhu
Branislav Kveton
OffRL
19
5
0
08 Nov 2021
Interpretable Personalized Experimentation
Interpretable Personalized Experimentation
Han Wu
S. Tan
Weiwei Li
Mia Garrard
Adam Obeng
Drew Dimmery
Shaun Singh
Hanson Wang
Daniel R. Jiang
E. Bakshy
33
5
0
05 Nov 2021
Adaptive Discretization in Online Reinforcement Learning
Adaptive Discretization in Online Reinforcement Learning
Sean R. Sinclair
Siddhartha Banerjee
Chao Yu
OffRL
45
15
0
29 Oct 2021
Adaptive Data Debiasing through Bounded Exploration
Adaptive Data Debiasing through Bounded Exploration
Yifan Yang
Yang Liu
Parinaz Naghizadeh
FaML
30
7
0
25 Oct 2021
On Slowly-varying Non-stationary Bandits
On Slowly-varying Non-stationary Bandits
Ramakrishnan Krishnamurthy
Médéric Fourmy
27
8
0
25 Oct 2021
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Jordan T. Ash
Cyril Zhang
Surbhi Goel
A. Krishnamurthy
Sham Kakade
45
6
0
21 Oct 2021
Game Redesign in No-regret Game Playing
Game Redesign in No-regret Game Playing
Yuzhe Ma
Young Wu
Xiaojin Zhu
24
10
0
18 Oct 2021
Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
  Comparisons
Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons
Yue Wu
Tao Jin
Hao Lou
Pan Xu
Farzad Farnoud
Quanquan Gu
29
5
0
08 Oct 2021
Customs Fraud Detection in the Presence of Concept Drift
Customs Fraud Detection in the Presence of Concept Drift
Tung Mai
Kien Hoang
Aitolkyn Baigutanova
Gaukhartas Alina
Sundong Kim
28
9
0
29 Sep 2021
Online Learning of Network Bottlenecks via Minimax Paths
Online Learning of Network Bottlenecks via Minimax Paths
Niklas Åkerblom
F. Hoseini
M. Chehreghani
32
10
0
17 Sep 2021
Extreme Bandits using Robust Statistics
Extreme Bandits using Robust Statistics
Sujay Bhatt
Ping Li
G. Samorodnitsky
30
7
0
09 Sep 2021
Bilateral Trade: A Regret Minimization Perspective
Bilateral Trade: A Regret Minimization Perspective
Nicolò Cesa-Bianchi
Tommaso Cesari
Roberto Colomboni
Federico Fusco
S. Leonardi
41
21
0
08 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-Shan Shiu
39
51
0
20 Aug 2021
Learning from an Exploring Demonstrator: Optimal Reward Estimation for
  Bandits
Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
Wenshuo Guo
Kumar Krishna Agrawal
Aditya Grover
Vidya Muthukumar
A. Pananjady
16
8
0
28 Jun 2021
Multi-armed Bandit Algorithms on System-on-Chip: Go Frequentist or
  Bayesian?
Multi-armed Bandit Algorithms on System-on-Chip: Go Frequentist or Bayesian?
S. Santosh
S. Darak
19
0
0
05 Jun 2021
Optimal Algorithms for Range Searching over Multi-Armed Bandits
Optimal Algorithms for Range Searching over Multi-Armed Bandits
Siddharth Barman
Ramakrishnan Krishnamurthy
S. Rahul
20
0
0
04 May 2021
Causal Decision Making and Causal Effect Estimation Are Not the Same...
  and Why It Matters
Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters
Carlos Fernández-Loría
F. Provost
CML
19
43
0
08 Apr 2021
Constrained Contextual Bandit Learning for Adaptive Radar Waveform
  Selection
Constrained Contextual Bandit Learning for Adaptive Radar Waveform Selection
C. Thornton
R. M. Buehrer
A. Martone
22
21
0
09 Mar 2021
Fairness of Exposure in Stochastic Bandits
Fairness of Exposure in Stochastic Bandits
Lequn Wang
Yiwei Bai
Wen Sun
Thorsten Joachims
FaML
29
49
0
03 Mar 2021
Bayesian adversarial multi-node bandit for optimal smart grid protection
  against cyber attacks
Bayesian adversarial multi-node bandit for optimal smart grid protection against cyber attacks
Jianyu Xu
Bin Liu
H. Mo
D. Dong
AAML
16
22
0
20 Feb 2021
A Regret Analysis of Bilateral Trade
A Regret Analysis of Bilateral Trade
Nicolò Cesa-Bianchi
Tommaso Cesari
Roberto Colomboni
Federico Fusco
S. Leonardi
39
20
0
16 Feb 2021
An empirical evaluation of active inference in multi-armed bandits
An empirical evaluation of active inference in multi-armed bandits
D. Marković
Hrvoje Stojić
Sarah Schwöbel
S. Kiebel
42
34
0
21 Jan 2021
Survival of the strictest: Stable and unstable equilibria under
  regularized learning with partial information
Survival of the strictest: Stable and unstable equilibria under regularized learning with partial information
Angeliki Giannou
Emmanouil-Vasileios Vlatakis-Gkaragkounis
P. Mertikopoulos
36
35
0
12 Jan 2021
Blackwell Online Learning for Markov Decision Processes
Blackwell Online Learning for Markov Decision Processes
Tao Li
Guanze Peng
Quanyan Zhu
OffRL
19
16
0
28 Dec 2020
Experts with Lower-Bounded Loss Feedback: A Unifying Framework
Experts with Lower-Bounded Loss Feedback: A Unifying Framework
Eyal Gofer
Guy Gilboa
OffRL
11
0
0
17 Dec 2020
Aging Bandits: Regret Analysis and Order-Optimal Learning Algorithm for
  Wireless Networks with Stochastic Arrivals
Aging Bandits: Regret Analysis and Order-Optimal Learning Algorithm for Wireless Networks with Stochastic Arrivals
Eray Unsal Atay
I. Kadota
E. Modiano
12
9
0
16 Dec 2020
Fully Gap-Dependent Bounds for Multinomial Logit Bandit
Fully Gap-Dependent Bounds for Multinomial Logit Bandit
Jiaqi Yang
16
2
0
19 Nov 2020
Multi-Armed Bandits with Censored Consumption of Resources
Multi-Armed Bandits with Censored Consumption of Resources
Viktor Bengs
Eyke Hüllermeier
30
2
0
02 Nov 2020
Reinforcement Learning for Efficient and Tuning-Free Link Adaptation
Reinforcement Learning for Efficient and Tuning-Free Link Adaptation
Vidit Saxena
H. Tullberg
Joakim Jaldén
21
36
0
16 Oct 2020
Online Learning with Vector Costs and Bandits with Knapsacks
Online Learning with Vector Costs and Bandits with Knapsacks
Thomas Kesselheim
Sahil Singla
9
32
0
14 Oct 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
27
128
0
15 Sep 2020
Competing AI: How does competition feedback affect machine learning?
Competing AI: How does competition feedback affect machine learning?
Antonio A. Ginart
Eva Zhang
Yongchan Kwon
James Zou
AAML
20
0
0
15 Sep 2020
Carousel Personalization in Music Streaming Apps with Contextual Bandits
Carousel Personalization in Music Streaming Apps with Contextual Bandits
Walid Bendada
Guillaume Salha-Galvan
Théo Bontempelli
29
56
0
14 Sep 2020
Using Subjective Logic to Estimate Uncertainty in Multi-Armed Bandit
  Problems
Using Subjective Logic to Estimate Uncertainty in Multi-Armed Bandit Problems
Fabio Massimo Zennaro
A. Jøsang
19
4
0
17 Aug 2020
Identity-Aware Attribute Recognition via Real-Time Distributed Inference
  in Mobile Edge Clouds
Identity-Aware Attribute Recognition via Real-Time Distributed Inference in Mobile Edge Clouds
Zichuan Xu
Jiangkai Wu
Qiufen Xia
Pan Zhou
Jiankang Ren
Huizhi Liang
23
4
0
12 Aug 2020
Green Offloading in Fog-Assisted IoT Systems: An Online Perspective
  Integrating Learning and Control
Green Offloading in Fog-Assisted IoT Systems: An Online Perspective Integrating Learning and Control
Xin Gao
Xi Huang
Ziyu Shao
Yang Yang
23
1
0
01 Aug 2020
Competing Bandits: The Perils of Exploration Under Competition
Competing Bandits: The Perils of Exploration Under Competition
Guy Aridor
Yishay Mansour
Aleksandrs Slivkins
Zhiwei Steven Wu
25
16
0
20 Jul 2020
Adaptive Discretization for Model-Based Reinforcement Learning
Adaptive Discretization for Model-Based Reinforcement Learning
Sean R. Sinclair
Tianyu Wang
Gauri Jain
Siddhartha Banerjee
Chao Yu
OffRL
19
21
0
01 Jul 2020
A Unifying Framework for Reinforcement Learning and Planning
A Unifying Framework for Reinforcement Learning and Planning
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
36
9
0
26 Jun 2020
Adaptive Discretization for Adversarial Lipschitz Bandits
Adaptive Discretization for Adversarial Lipschitz Bandits
Chara Podimata
Aleksandrs Slivkins
20
16
0
22 Jun 2020
$Q$-learning with Logarithmic Regret
QQQ-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
43
59
0
16 Jun 2020
Group-Fair Online Allocation in Continuous Time
Group-Fair Online Allocation in Continuous Time
Semih Cayci
Swati Gupta
A. Eryilmaz
FaML
32
19
0
11 Jun 2020
Efficient Contextual Bandits with Continuous Actions
Efficient Contextual Bandits with Continuous Actions
Maryam Majzoubi
Chicheng Zhang
Rajan Chari
A. Krishnamurthy
John Langford
Aleksandrs Slivkins
OffRL
29
32
0
10 Jun 2020
Greedy Algorithm almost Dominates in Smoothed Contextual Bandits
Greedy Algorithm almost Dominates in Smoothed Contextual Bandits
Manish Raghavan
Aleksandrs Slivkins
Jennifer Wortman Vaughan
Zhiwei Steven Wu
21
18
0
19 May 2020
Online Learning and Optimization for Revenue Management Problems with
  Add-on Discounts
Online Learning and Optimization for Revenue Management Problems with Add-on Discounts
D. Simchi-Levi
Rui Sun
Huanan Zhang
10
11
0
02 May 2020
Previous
1234
Next