ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07150
  4. Cited By
Variational Bayes for high-dimensional linear regression with sparse
  priors

Variational Bayes for high-dimensional linear regression with sparse priors

15 April 2019
Kolyan Ray
Botond Szabó
ArXivPDFHTML

Papers citing "Variational Bayes for high-dimensional linear regression with sparse priors"

15 / 15 papers shown
Title
Adaptive Bayesian Predictive Inference in High-dimensional Regerssion
Adaptive Bayesian Predictive Inference in High-dimensional Regerssion
Veronika Rockova
8
0
0
05 Sep 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
45
4
0
21 Apr 2023
Uncertainty quantification for sparse spectral variational
  approximations in Gaussian process regression
Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
28
5
0
21 Dec 2022
Variational Inference for Semiparametric Bayesian Novelty Detection in
  Large Datasets
Variational Inference for Semiparametric Bayesian Novelty Detection in Large Datasets
L. Benedetti
Eric Boniardi
Leonardo Chiani
Jacopo Ghirri
Marta Mastropietro
A. Cappozzo
Francesco Denti
29
0
0
04 Dec 2022
Regularized Rényi divergence minimization through Bregman proximal
  gradient algorithms
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
34
3
0
09 Nov 2022
Sparse high-dimensional linear regression with a partitioned empirical
  Bayes ECM algorithm
Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm
Alexander C. McLain
A. Zgodic
H. Bondell
31
2
0
16 Sep 2022
Bayesian Sparse Gaussian Mixture Model in High Dimensions
Bayesian Sparse Gaussian Mixture Model in High Dimensions
Dapeng Yao
Fangzheng Xie
Yanxun Xu
33
1
0
21 Jul 2022
On the inability of Gaussian process regression to optimally learn
  compositional functions
On the inability of Gaussian process regression to optimally learn compositional functions
M. Giordano
Kolyan Ray
Johannes Schmidt-Hieber
39
12
0
16 May 2022
Scalable Spike-and-Slab
Scalable Spike-and-Slab
N. Biswas
Lester W. Mackey
Xiao-Li Meng
GP
29
11
0
04 Apr 2022
Variational Bayes for high-dimensional proportional hazards models with
  applications within gene expression
Variational Bayes for high-dimensional proportional hazards models with applications within gene expression
M. Komodromos
E. Aboagye
Marina Evangelou
Sarah Filippi
Kolyan Ray
14
9
0
19 Dec 2021
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
52
17
0
22 Sep 2021
Performance of Bayesian linear regression in a model with mismatch
Performance of Bayesian linear regression in a model with mismatch
Jean Barbier
Wei-Kuo Chen
D. Panchenko
Manuel Sáenz
40
22
0
14 Jul 2021
Posterior contraction for deep Gaussian process priors
Posterior contraction for deep Gaussian process priors
G. Finocchio
Johannes Schmidt-Hieber
35
11
0
16 May 2021
Latent Network Estimation and Variable Selection for Compositional Data
  via Variational EM
Latent Network Estimation and Variable Selection for Compositional Data via Variational EM
Nathan Osborne
Christine B. Peterson
M. Vannucci
BDL
8
18
0
25 Oct 2020
Spike and slab variational Bayes for high dimensional logistic
  regression
Spike and slab variational Bayes for high dimensional logistic regression
Kolyan Ray
Botond Szabó
Gabriel Clara
40
28
0
22 Oct 2020
1