ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.05967
  4. Cited By
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning

TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning

11 April 2019
Xin Wang
Feng Yu
Ruth Wang
Trevor Darrell
Joseph E. Gonzalez
ArXivPDFHTML

Papers citing "TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning"

16 / 16 papers shown
Title
Multi-Modal Fusion by Meta-Initialization
Multi-Modal Fusion by Meta-Initialization
Matthew Jackson
Shreshth A. Malik
Michael T. Matthews
Yousuf Mohamed-Ahmed
46
0
0
10 Oct 2022
Self-Adaptive Label Augmentation for Semi-supervised Few-shot
  Classification
Self-Adaptive Label Augmentation for Semi-supervised Few-shot Classification
Xueliang Wang
Jianyu Cai
Shuiwang Ji
Houqiang Li
Feng Wu
Jie Wang
16
0
0
16 Jun 2022
A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
  Challenges, and Opportunities
A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Yisheng Song
Ting-Yuan Wang
S. Mondal
J. P. Sahoo
SLR
59
345
0
13 May 2022
Few-shot Learning with Noisy Labels
Few-shot Learning with Noisy Labels
Kevin J. Liang
Samrudhdhi B. Rangrej
Vladan Petrovic
Tal Hassner
NoLa
35
47
0
12 Apr 2022
Diversity-boosted Generalization-Specialization Balancing for Zero-shot
  Learning
Diversity-boosted Generalization-Specialization Balancing for Zero-shot Learning
Yun Yvonna Li
Zhe Liu
Xiaojun Chang
Julian McAuley
L. Yao
19
10
0
06 Jan 2022
SEGA: Semantic Guided Attention on Visual Prototype for Few-Shot
  Learning
SEGA: Semantic Guided Attention on Visual Prototype for Few-Shot Learning
Fengyuan Yang
Ruiping Wang
Xilin Chen
VLM
39
35
0
08 Nov 2021
A Comparative Review of Recent Few-Shot Object Detection Algorithms
A Comparative Review of Recent Few-Shot Object Detection Algorithms
Jiaxu Leng
Taiyue Chen
Gao Xinbo
Yongtao Yu
Ye Wang
Feng Gao
Wang Yue
ObjD
31
15
0
30 Oct 2021
The Functional Correspondence Problem
The Functional Correspondence Problem
Zihang Lai
Senthil Purushwalkam
Abhinav Gupta
43
13
0
02 Sep 2021
Learning to Predict Visual Attributes in the Wild
Learning to Predict Visual Attributes in the Wild
Khoi Pham
Kushal Kafle
Zhe Lin
Zhi Ding
Scott D. Cohen
Q. Tran
Abhinav Shrivastava
21
108
0
17 Jun 2021
Universal-Prototype Enhancing for Few-Shot Object Detection
Universal-Prototype Enhancing for Few-Shot Object Detection
Aming Wu
Yahong Han
Linchao Zhu
Yi Yang
ObjD
46
84
0
01 Mar 2021
Learning from Few Samples: A Survey
Learning from Few Samples: A Survey
Nihar Bendre
Hugo Terashima-Marín
Peyman Najafirad
VLM
BDL
26
54
0
30 Jul 2020
Multi-Task Reinforcement Learning with Soft Modularization
Multi-Task Reinforcement Learning with Soft Modularization
Ruihan Yang
Huazhe Xu
Yi Wu
Xiaolong Wang
27
177
0
30 Mar 2020
Frustratingly Simple Few-Shot Object Detection
Frustratingly Simple Few-Shot Object Detection
Xin Wang
Thomas E. Huang
Trevor Darrell
Joseph E. Gonzalez
Feng Yu
ObjD
104
544
0
16 Mar 2020
Stochastic Conditional Generative Networks with Basis Decomposition
Stochastic Conditional Generative Networks with Basis Decomposition
Ze Wang
Xiuyuan Cheng
Guillermo Sapiro
Qiang Qiu
GAN
24
18
0
25 Sep 2019
Deep Learning on Small Datasets without Pre-Training using Cosine Loss
Deep Learning on Small Datasets without Pre-Training using Cosine Loss
Björn Barz
Joachim Denzler
27
129
0
25 Jan 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
523
11,727
0
09 Mar 2017
1