ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.05967
  4. Cited By
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning

TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning

11 April 2019
Xin Wang
Feng Yu
Ruth Wang
Trevor Darrell
Joseph E. Gonzalez
ArXivPDFHTML

Papers citing "TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning"

16 / 16 papers shown
Title
Multi-Modal Fusion by Meta-Initialization
Multi-Modal Fusion by Meta-Initialization
Matthew Jackson
Shreshth A. Malik
Michael T. Matthews
Yousuf Mohamed-Ahmed
36
0
0
10 Oct 2022
Self-Adaptive Label Augmentation for Semi-supervised Few-shot
  Classification
Self-Adaptive Label Augmentation for Semi-supervised Few-shot Classification
Xueliang Wang
Jianyu Cai
Shuiwang Ji
Houqiang Li
Feng Wu
Jie Wang
16
0
0
16 Jun 2022
A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
  Challenges, and Opportunities
A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Yisheng Song
Ting-Yuan Wang
S. Mondal
J. P. Sahoo
SLR
56
345
0
13 May 2022
Few-shot Learning with Noisy Labels
Few-shot Learning with Noisy Labels
Kevin J Liang
Samrudhdhi B. Rangrej
Vladan Petrovic
Tal Hassner
NoLa
30
47
0
12 Apr 2022
Diversity-boosted Generalization-Specialization Balancing for Zero-shot
  Learning
Diversity-boosted Generalization-Specialization Balancing for Zero-shot Learning
Yun Yvonna Li
Zhe Liu
Xiaojun Chang
Julian McAuley
L. Yao
17
10
0
06 Jan 2022
SEGA: Semantic Guided Attention on Visual Prototype for Few-Shot
  Learning
SEGA: Semantic Guided Attention on Visual Prototype for Few-Shot Learning
Fengyuan Yang
Ruiping Wang
Xilin Chen
VLM
39
35
0
08 Nov 2021
A Comparative Review of Recent Few-Shot Object Detection Algorithms
A Comparative Review of Recent Few-Shot Object Detection Algorithms
Jiaxu Leng
Taiyue Chen
Gao Xinbo
Yongtao Yu
Ye Wang
Feng Gao
Wang Yue
ObjD
24
15
0
30 Oct 2021
The Functional Correspondence Problem
The Functional Correspondence Problem
Zihang Lai
Senthil Purushwalkam
Abhinav Gupta
43
13
0
02 Sep 2021
Learning to Predict Visual Attributes in the Wild
Learning to Predict Visual Attributes in the Wild
Khoi Pham
Kushal Kafle
Zhe-nan Lin
Zhi Ding
Scott D. Cohen
Q. Tran
Abhinav Shrivastava
18
108
0
17 Jun 2021
Universal-Prototype Enhancing for Few-Shot Object Detection
Universal-Prototype Enhancing for Few-Shot Object Detection
Aming Wu
Yahong Han
Linchao Zhu
Yi Yang
ObjD
41
84
0
01 Mar 2021
Learning from Few Samples: A Survey
Learning from Few Samples: A Survey
Nihar Bendre
Hugo Terashima-Marín
Peyman Najafirad
VLM
BDL
26
54
0
30 Jul 2020
Multi-Task Reinforcement Learning with Soft Modularization
Multi-Task Reinforcement Learning with Soft Modularization
Ruihan Yang
Huazhe Xu
Yi Wu
Xiaolong Wang
27
176
0
30 Mar 2020
Frustratingly Simple Few-Shot Object Detection
Frustratingly Simple Few-Shot Object Detection
Xin Wang
Thomas E. Huang
Trevor Darrell
Joseph E. Gonzalez
Feng Yu
ObjD
101
544
0
16 Mar 2020
Stochastic Conditional Generative Networks with Basis Decomposition
Stochastic Conditional Generative Networks with Basis Decomposition
Ze Wang
Xiuyuan Cheng
Guillermo Sapiro
Qiang Qiu
GAN
24
18
0
25 Sep 2019
Deep Learning on Small Datasets without Pre-Training using Cosine Loss
Deep Learning on Small Datasets without Pre-Training using Cosine Loss
Björn Barz
Joachim Denzler
27
129
0
25 Jan 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
478
11,715
0
09 Mar 2017
1