ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.04849
  4. Cited By
Just Jump: Dynamic Neighborhood Aggregation in Graph Neural Networks

Just Jump: Dynamic Neighborhood Aggregation in Graph Neural Networks

9 April 2019
Matthias Fey
    GNN
ArXivPDFHTML

Papers citing "Just Jump: Dynamic Neighborhood Aggregation in Graph Neural Networks"

13 / 13 papers shown
Title
HRGR: Enhancing Image Manipulation Detection via Hierarchical Region-aware Graph Reasoning
HRGR: Enhancing Image Manipulation Detection via Hierarchical Region-aware Graph Reasoning
Xudong Wang
Y. Li
Huiyu Zhou
Jiaran Zhou
Junyu Dong
42
1
0
29 Oct 2024
AutoHEnsGNN: Winning Solution to AutoGraph Challenge for KDD Cup 2020
AutoHEnsGNN: Winning Solution to AutoGraph Challenge for KDD Cup 2020
Jin Xu
Mingjian Chen
Jianqiang Huang
Xingyuan Tang
Ke Hu
Jian Li
Jia Cheng
Jun Lei
20
2
0
25 Nov 2021
NODE-SELECT: A Graph Neural Network Based On A Selective Propagation
  Technique
NODE-SELECT: A Graph Neural Network Based On A Selective Propagation Technique
Steph-Yves M. Louis
Alireza Nasiri
Fatima J. Rolland
Cameron Mitro
Jianjun Hu
68
9
0
17 Feb 2021
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised
  Classification
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
28
20
0
07 Dec 2020
Information Obfuscation of Graph Neural Networks
Information Obfuscation of Graph Neural Networks
Peiyuan Liao
Han Zhao
Keyulu Xu
Tommi Jaakkola
Geoffrey J. Gordon
Stefanie Jegelka
Ruslan Salakhutdinov
AAML
23
34
0
28 Sep 2020
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and
  Architectures
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures
Julien Launay
Iacopo Poli
Franccois Boniface
Florent Krzakala
33
62
0
23 Jun 2020
Measuring and Relieving the Over-smoothing Problem for Graph Neural
  Networks from the Topological View
Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View
Deli Chen
Yankai Lin
Wei Li
Peng Li
Jie Zhou
Xu Sun
30
1,078
0
07 Sep 2019
GraphSAINT: Graph Sampling Based Inductive Learning Method
GraphSAINT: Graph Sampling Based Inductive Learning Method
Hanqing Zeng
Hongkuan Zhou
Ajitesh Srivastava
R. Kannan
Viktor Prasanna
GNN
72
948
0
10 Jul 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph
  Kernels
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
12
268
0
30 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
68
4,235
0
06 Mar 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,945
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1