ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.04516
  4. Cited By
Uncertainty Measures and Prediction Quality Rating for the Semantic
  Segmentation of Nested Multi Resolution Street Scene Images

Uncertainty Measures and Prediction Quality Rating for the Semantic Segmentation of Nested Multi Resolution Street Scene Images

9 April 2019
Matthias Rottmann
Marius Schubert
    UQCV
ArXivPDFHTML

Papers citing "Uncertainty Measures and Prediction Quality Rating for the Semantic Segmentation of Nested Multi Resolution Street Scene Images"

13 / 13 papers shown
Title
Uncertainty and Prediction Quality Estimation for Semantic Segmentation
  via Graph Neural Networks
Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks
Edgar Heinert
Stephan Tilgner
Timo Palm
Matthias Rottmann
UQCV
51
0
0
17 Sep 2024
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Laura Fieback
Jakob Spiegelberg
Hanno Gottschalk
MLLM
67
5
0
29 May 2024
Two Video Data Sets for Tracking and Retrieval of Out of Distribution
  Objects
Two Video Data Sets for Tracking and Retrieval of Out of Distribution Objects
Kira Maag
Robin Shing Moon Chan
Svenja Uhlemeyer
K. Kowol
Hanno Gottschalk
45
19
0
05 Oct 2022
Uncertainty Quantification and Resource-Demanding Computer Vision
  Applications of Deep Learning
Uncertainty Quantification and Resource-Demanding Computer Vision Applications of Deep Learning
Julian Burghoff
Robin Shing Moon Chan
Hanno Gottschalk
Annika Muetze
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
BDL
34
0
0
30 May 2022
False Positive Detection and Prediction Quality Estimation for LiDAR
  Point Cloud Segmentation
False Positive Detection and Prediction Quality Estimation for LiDAR Point Cloud Segmentation
Pascal Colling
Matthias Rottmann
L. Roese-Koerner
Hanno Gottschalk
3DPC
30
3
0
29 Oct 2021
Semantics for Robotic Mapping, Perception and Interaction: A Survey
Semantics for Robotic Mapping, Perception and Interaction: A Survey
Sourav Garg
Niko Sünderhauf
Feras Dayoub
D. Morrison
Akansel Cosgun
...
Tat-Jun Chin
Ian Reid
Stephen Gould
Peter Corke
Michael Milford
31
115
0
02 Jan 2021
Improving Video Instance Segmentation by Light-weight Temporal
  Uncertainty Estimates
Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates
Kira Maag
Matthias Rottmann
Serin Varghese
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
22
12
0
14 Dec 2020
Entropy Maximization and Meta Classification for Out-Of-Distribution
  Detection in Semantic Segmentation
Entropy Maximization and Meta Classification for Out-Of-Distribution Detection in Semantic Segmentation
Robin Shing Moon Chan
Matthias Rottmann
Hanno Gottschalk
OODD
37
149
0
09 Dec 2020
YOdar: Uncertainty-based Sensor Fusion for Vehicle Detection with Camera
  and Radar Sensors
YOdar: Uncertainty-based Sensor Fusion for Vehicle Detection with Camera and Radar Sensors
K. Kowol
Matthias Rottmann
S. Bracke
Hanno Gottschalk
UQCV
19
37
0
07 Oct 2020
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates
  for Object Detection
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection
Marius Schubert
Karsten Kahl
Matthias Rottmann
UQCV
29
24
0
04 Oct 2020
Confidence Calibration and Predictive Uncertainty Estimation for Deep
  Medical Image Segmentation
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
Alireza Mehrtash
W. Wells
C. Tempany
Purang Abolmaesumi
Tina Kapur
OOD
FedML
UQCV
24
265
0
29 Nov 2019
Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
  Networks
Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation Networks
Kira Maag
Matthias Rottmann
Hanno Gottschalk
29
34
0
12 Nov 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1