ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.03076
  4. Cited By
SDC - Stacked Dilated Convolution: A Unified Descriptor Network for
  Dense Matching Tasks

SDC - Stacked Dilated Convolution: A Unified Descriptor Network for Dense Matching Tasks

5 April 2019
René Schuster
Oliver Wasenmüller
C. Unger
D. Stricker
    MDE
ArXivPDFHTML

Papers citing "SDC - Stacked Dilated Convolution: A Unified Descriptor Network for Dense Matching Tasks"

21 / 21 papers shown
Title
Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi-
  Supervised Semantic Segmentation
Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi- Supervised Semantic Segmentation
Yunchao Wei
Huaxin Xiao
Humphrey Shi
Zequn Jie
Jiashi Feng
Thomas S. Huang
SSeg
80
544
0
11 May 2018
FlowFields++: Accurate Optical Flow Correspondences Meet Robust
  Interpolation
FlowFields++: Accurate Optical Flow Correspondences Meet Robust Interpolation
René Schuster
C. Bailer
Oliver Wasenmüller
D. Stricker
46
22
0
09 May 2018
CSRNet: Dilated Convolutional Neural Networks for Understanding the
  Highly Congested Scenes
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
Yuhong Li
Xiaofan Zhang
Deming Chen
125
1,334
0
27 Feb 2018
Combining Stereo Disparity and Optical Flow for Basic Scene Flow
Combining Stereo Disparity and Optical Flow for Basic Scene Flow
René Schuster
C. Bailer
Oliver Wasenmüller
D. Stricker
3DPC
31
25
0
15 Jan 2018
SceneFlowFields: Dense Interpolation of Sparse Scene Flow
  Correspondences
SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences
René Schuster
Oliver Wasenmüller
G. Kuschk
C. Bailer
D. Stricker
42
38
0
27 Oct 2017
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
Deqing Sun
Xiaodong Yang
Ming-Yuan Liu
Jan Kautz
3DPC
249
2,443
0
07 Sep 2017
Effective Use of Dilated Convolutions for Segmenting Small Object
  Instances in Remote Sensing Imagery
Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery
Ryuhei Hamaguchi
A. Fujita
Keisuke Nemoto
T. Imaizumi
S. Hikosaka
90
219
0
01 Sep 2017
Understanding Convolution for Semantic Segmentation
Understanding Convolution for Semantic Segmentation
Panqu Wang
Pengfei Chen
Ye Yuan
Ding Liu
Zehua Huang
Xiaodi Hou
G. Cottrell
SSeg
67
1,686
0
27 Feb 2017
CNN-based Patch Matching for Optical Flow with Thresholded Hinge
  Embedding Loss
CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss
C. Bailer
Kiran Varanasi
Didier Stricker
45
63
0
27 Jul 2016
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
  Atrous Convolution, and Fully Connected CRFs
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
229
18,195
0
02 Jun 2016
PN-Net: Conjoined Triple Deep Network for Learning Local Image
  Descriptors
PN-Net: Conjoined Triple Deep Network for Learning Local Image Descriptors
Vassileios Balntas
Edward Johns
Lilian Tang
K. Mikolajczyk
78
173
0
19 Jan 2016
PatchBatch: a Batch Augmented Loss for Optical Flow
PatchBatch: a Batch Augmented Loss for Optical Flow
David Gadot
Lior Wolf
51
102
0
06 Dec 2015
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
287
5,518
0
23 Nov 2015
Multi-Scale Context Aggregation by Dilated Convolutions
Multi-Scale Context Aggregation by Dilated Convolutions
Feng Yu
V. Koltun
SSeg
260
8,434
0
23 Nov 2015
Flow Fields: Dense Correspondence Fields for Highly Accurate Large
  Displacement Optical Flow Estimation
Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation
C. Bailer
B. Taetz
D. Stricker
51
216
0
21 Aug 2015
Learning to Compare Image Patches via Convolutional Neural Networks
Learning to Compare Image Patches via Convolutional Neural Networks
Sergey Zagoruyko
N. Komodakis
SSL
81
1,436
0
14 Apr 2015
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical
  Flow
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
Jérôme Revaud
Philippe Weinzaepfel
Zaïd Harchaoui
Cordelia Schmid
69
796
0
12 Jan 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
236
4,665
0
21 Dec 2014
Deep metric learning using Triplet network
Deep metric learning using Triplet network
Elad Hoffer
Nir Ailon
SSL
DML
182
1,993
0
20 Dec 2014
Computing the Stereo Matching Cost with a Convolutional Neural Network
Computing the Stereo Matching Cost with a Convolutional Neural Network
Jure Zbontar
Yann LeCun
3DV
67
769
0
15 Sep 2014
1