Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.02130
Cited By
Normal Approximation for Stochastic Gradient Descent via Non-Asymptotic Rates of Martingale CLT
3 April 2019
Andreas Anastasiou
Krishnakumar Balasubramanian
Murat A. Erdogdu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Normal Approximation for Stochastic Gradient Descent via Non-Asymptotic Rates of Martingale CLT"
17 / 17 papers shown
Title
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
S. Samsonov
Eric Moulines
Qi-Man Shao
Zhuo-Song Zhang
Alexey Naumov
61
5
0
26 May 2024
Rates of Convergence in the Central Limit Theorem for Markov Chains, with an Application to TD Learning
R. Srikant
68
6
0
28 Jan 2024
Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality
Ziyang Wei
Wanrong Zhu
Wei Biao Wu
44
5
0
13 Jul 2023
Statistical Inference for Linear Functionals of Online SGD in High-dimensional Linear Regression
Bhavya Agrawalla
Krishnakumar Balasubramanian
Promit Ghosal
41
2
0
20 Feb 2023
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
65
50
0
14 Jun 2020
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
40
105
0
29 Oct 2018
Deterministic Inequalities for Smooth M-estimators
Arun K. Kuchibhotla
40
8
0
13 Sep 2018
Asymptotic Optimality in Stochastic Optimization
John C. Duchi
Feng Ruan
34
62
0
16 Dec 2016
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
55
116
0
21 Nov 2016
Statistical Inference for Model Parameters in Stochastic Gradient Descent
Xi Chen
Jason D. Lee
Xin T. Tong
Yichen Zhang
49
137
0
27 Oct 2016
Assessing the multivariate normal approximation of the maximum likelihood estimator from high-dimensional, heterogeneous data
Andreas Anastasiou
18
13
0
13 Oct 2015
Convergence rates of sub-sampled Newton methods
Murat A. Erdogdu
Andrea Montanari
55
157
0
12 Aug 2015
Central Limit Theorems and Bootstrap in High Dimensions
Victor Chernozhukov
Denis Chetverikov
Kengo Kato
43
312
0
11 Dec 2014
Non-parametric Stochastic Approximation with Large Step sizes
Aymeric Dieuleveut
Francis R. Bach
37
169
0
02 Aug 2014
Hypothesis testing by convex optimization
A. Goldenshluger
A. Juditsky
A. Nemirovski
40
26
0
26 Nov 2013
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
76
764
0
26 Sep 2011
On the rate of convergence in the martingale central limit theorem
J. Mourrat
59
36
0
25 Mar 2011
1