We study local complexity measures for stochastic convex optimization problems, providing a local minimax theory analogous to that of H\'{a}jek and Le Cam for classical statistical problems. We give complementary optimality results, developing fully online methods that adaptively achieve optimal convergence guarantees. Our results provide function-specific lower bounds and convergence results that make precise a correspondence between statistical difficulty and the geometric notion of tilt-stability from optimization. As part of this development, we show how variants of Nesterov's dual averaging---a stochastic gradient-based procedure---guarantee finite time identification of constraints in optimization problems, while stochastic gradient procedures fail. Additionally, we highlight a gap between problems with linear and nonlinear constraints: standard stochastic-gradient-based procedures are suboptimal even for the simplest nonlinear constraints, necessitating the development of asymptotically optimal Riemannian stochastic gradient methods.
View on arXiv