Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.00377
Cited By
A Theoretical Analysis of Deep Neural Networks and Parametric PDEs
31 March 2019
Gitta Kutyniok
P. Petersen
Mones Raslan
R. Schneider
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Theoretical Analysis of Deep Neural Networks and Parametric PDEs"
38 / 38 papers shown
Title
Reduced Order Models and Conditional Expectation -- Analysing Parametric Low-Order Approximations
Hermann G. Matthies
42
0
0
17 Feb 2025
Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation
Janina Enrica Schutte
Martin Eigel
AI4CE
29
2
0
19 Mar 2024
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
31
1
0
30 Mar 2023
Limitations of neural network training due to numerical instability of backpropagation
Clemens Karner
V. Kazeev
P. Petersen
40
3
0
03 Oct 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
56
6
0
17 Sep 2022
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
PINN
15
10
0
15 Jul 2022
Deep surrogate accelerated delayed-acceptance HMC for Bayesian inference of spatio-temporal heat fluxes in rotating disc systems
Teo Deveney
E. Mueller
T. Shardlow
AI4CE
27
0
0
05 Apr 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
The Mathematics of Artificial Intelligence
Gitta Kutyniok
22
0
0
16 Mar 2022
A machine learning approach for fighting the curse of dimensionality in global optimization
J. Schumann
Alejandro M. Aragón
28
2
0
28 Oct 2021
An artificial neural network approach to bifurcating phenomena in computational fluid dynamics
F. Pichi
F. Ballarin
G. Rozza
J. Hesthaven
AI4CE
38
71
0
22 Sep 2021
Learning Density Distribution of Reachable States for Autonomous Systems
Yue Meng
Dawei Sun
Zeng Qiu
Md Tawhid Bin Waez
Chuchu Fan
77
19
0
14 Sep 2021
Variational Physics Informed Neural Networks: the role of quadratures and test functions
S. Berrone
C. Canuto
Moreno Pintore
31
41
0
05 Sep 2021
Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
22
4
0
31 Aug 2021
Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques
T. Kadeethum
F. Ballarin
Y. Cho
Daniel O’Malley
H. Yoon
N. Bouklas
AI4CE
18
61
0
23 Jul 2021
Cell-average based neural network method for hyperbolic and parabolic partial differential equations
Changxin Qiu
Jue Yan
16
10
0
02 Jul 2021
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
21
100
0
28 Jun 2021
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
21
35
0
14 Jun 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
29
23
0
05 May 2021
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
26
138
0
18 Apr 2021
Proof of the Theory-to-Practice Gap in Deep Learning via Sampling Complexity bounds for Neural Network Approximation Spaces
Philipp Grohs
F. Voigtlaender
31
34
0
06 Apr 2021
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
26
45
0
10 Mar 2021
Parametric Complexity Bounds for Approximating PDEs with Neural Networks
Tanya Marwah
Zachary Chase Lipton
Andrej Risteski
28
19
0
03 Mar 2021
POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
S. Fresca
Andrea Manzoni
AI4CE
21
212
0
28 Jan 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
36
29
0
11 Dec 2020
Depth separation for reduced deep networks in nonlinear model reduction: Distilling shock waves in nonlinear hyperbolic problems
Donsub Rim
Luca Venturi
Joan Bruna
Benjamin Peherstorfer
28
9
0
28 Jul 2020
Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions
Philipp Grohs
L. Herrmann
30
52
0
10 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Space-time deep neural network approximations for high-dimensional partial differential equations
F. Hornung
Arnulf Jentzen
Diyora Salimova
AI4CE
29
19
0
03 Jun 2020
Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation
Arnulf Jentzen
Timo Welti
22
15
0
03 Mar 2020
A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
S. Fresca
Luca Dede'
Andrea Manzoni
AI4CE
28
258
0
12 Jan 2020
Uniform error estimates for artificial neural network approximations for heat equations
Lukas Gonon
Philipp Grohs
Arnulf Jentzen
David Kofler
David Siska
29
34
0
20 Nov 2019
Space-time error estimates for deep neural network approximations for differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philipp Zimmermann
29
33
0
11 Aug 2019
Deep splitting method for parabolic PDEs
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
23
125
0
08 Jul 2019
Data driven approximation of parametrized PDEs by Reduced Basis and Neural Networks
N. D. Santo
S. Deparis
Luca Pegolotti
19
66
0
02 Apr 2019
Unbiased deep solvers for linear parametric PDEs
Marc Sabate Vidales
David Siska
Lukasz Szpruch
OOD
32
7
0
11 Oct 2018
Solving the Kolmogorov PDE by means of deep learning
C. Beck
S. Becker
Philipp Grohs
Nor Jaafari
Arnulf Jentzen
19
91
0
01 Jun 2018
1