Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.11991
Cited By
Parabolic Approximation Line Search for DNNs
28 March 2019
Max Mutschler
A. Zell
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Parabolic Approximation Line Search for DNNs"
33 / 33 papers shown
Title
Using a one dimensional parabolic model of the full-batch loss to estimate learning rates during training
Max Mutschler
Kevin Laube
A. Zell
ODL
17
1
0
31 Aug 2021
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
93
2
0
07 Jul 2021
Empirically explaining SGD from a line search perspective
Max Mutschler
A. Zell
ODL
LRM
36
4
0
31 Mar 2021
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
100
11
0
15 Sep 2019
Automatic and Simultaneous Adjustment of Learning Rate and Momentum for Stochastic Gradient Descent
Tomer Lancewicki
Selçuk Köprü
19
5
0
20 Aug 2019
On the Variance of the Adaptive Learning Rate and Beyond
Liyuan Liu
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
Jiawei Han
ODL
145
1,894
0
08 Aug 2019
Training Neural Networks for and by Interpolation
Leonard Berrada
Andrew Zisserman
M. P. Kumar
3DH
24
62
0
13 Jun 2019
Large Scale Structure of Neural Network Loss Landscapes
Stanislav Fort
Stanislaw Jastrzebski
39
83
0
11 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
87
17,950
0
28 May 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
70
207
0
24 May 2019
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
52
2,482
0
19 Apr 2019
Gradient-only line searches: An Alternative to Probabilistic Line Searches
D. Kafka
D. Wilke
ODL
50
14
0
22 Mar 2019
Adaptive Gradient Methods with Dynamic Bound of Learning Rate
Liangchen Luo
Yuanhao Xiong
Yan Liu
Xu Sun
ODL
46
600
0
26 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
47
149
0
02 Feb 2019
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedML
MoMe
93
1,643
0
14 Mar 2018
A Walk with SGD
Chen Xing
Devansh Arpit
Christos Tsirigotis
Yoshua Bengio
65
118
0
24 Feb 2018
L4: Practical loss-based stepsize adaptation for deep learning
Michal Rolínek
Georg Martius
ODL
81
64
0
14 Feb 2018
ShakeDrop Regularization for Deep Residual Learning
Yoshihiro Yamada
Masakazu Iwamura
Takuya Akiba
K. Kise
55
162
0
07 Feb 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
129
19,124
0
13 Jan 2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
230
1,873
0
28 Dec 2017
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
29
228
0
12 Jun 2017
Shake-Shake regularization
Xavier Gastaldi
3DPC
BDL
OOD
55
380
0
21 May 2017
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
ODL
49
245
0
14 Mar 2017
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
115
62
0
18 Oct 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
622
36,599
0
25 Aug 2016
Neither Quick Nor Proper -- Evaluation of QuickProp for Learning Deep Neural Networks
C. Brust
Sven Sickert
Marcel Simon
E. Rodner
Joachim Denzler
SSeg
VLM
11
3
0
14 Jun 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
63
999
0
19 Mar 2015
Probabilistic Line Searches for Stochastic Optimization
Maren Mahsereci
Philipp Hennig
ODL
47
126
0
10 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
778
149,474
0
22 Dec 2014
Qualitatively characterizing neural network optimization problems
Ian Goodfellow
Oriol Vinyals
Andrew M. Saxe
ODL
79
519
0
19 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
891
99,991
0
04 Sep 2014
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
108
6,619
0
22 Dec 2012
1