ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.11331
  4. Cited By
Active Multi-Information Source Bayesian Quadrature

Active Multi-Information Source Bayesian Quadrature

27 March 2019
A. Gessner
Javier I. González
Maren Mahsereci
ArXivPDFHTML

Papers citing "Active Multi-Information Source Bayesian Quadrature"

10 / 10 papers shown
Title
Survey of multifidelity methods in uncertainty propagation, inference,
  and optimization
Survey of multifidelity methods in uncertainty propagation, inference, and optimization
Benjamin Peherstorfer
Karen E. Willcox
M. Gunzburger
AI4CE
35
747
0
28 Jun 2018
Improving Quadrature for Constrained Integrands
Improving Quadrature for Constrained Integrands
Henry Chai
Roman Garnett
TPM
18
27
0
13 Feb 2018
Bayesian Quadrature for Multiple Related Integrals
Bayesian Quadrature for Multiple Related Integrals
Xiaoyue Xi
François‐Xavier Briol
Mark Girolami
29
39
0
12 Jan 2018
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
48
165
0
13 Feb 2017
Active Uncertainty Calibration in Bayesian ODE Solvers
Active Uncertainty Calibration in Bayesian ODE Solvers
Hans Kersting
Philipp Hennig
24
46
0
11 May 2016
Multi-Information Source Optimization
Multi-Information Source Optimization
Matthias Poloczek
Jialei Wang
P. Frazier
72
198
0
01 Mar 2016
Probabilistic Numerics and Uncertainty in Computations
Probabilistic Numerics and Uncertainty in Computations
Philipp Hennig
Michael A. Osborne
Mark Girolami
32
305
0
03 Jun 2015
Sampling for Inference in Probabilistic Models with Fast Bayesian
  Quadrature
Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature
Tom Gunter
Michael A. Osborne
Roman Garnett
Philipp Hennig
Stephen J. Roberts
TPM
34
104
0
03 Nov 2014
Recursive co-kriging model for Design of Computer experiments with
  multiple levels of fidelity with an application to hydrodynamic
Recursive co-kriging model for Design of Computer experiments with multiple levels of fidelity with an application to hydrodynamic
Loic Le Gratiet
AI4CE
111
294
0
02 Oct 2012
Kernels for Vector-Valued Functions: a Review
Kernels for Vector-Valued Functions: a Review
Mauricio A. Alvarez
Lorenzo Rosasco
Neil D. Lawrence
GP
144
918
0
30 Jun 2011
1