ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.08560
  4. Cited By
Surprises in High-Dimensional Ridgeless Least Squares Interpolation

Surprises in High-Dimensional Ridgeless Least Squares Interpolation

19 March 2019
Trevor Hastie
Andrea Montanari
Saharon Rosset
R. Tibshirani
ArXivPDFHTML

Papers citing "Surprises in High-Dimensional Ridgeless Least Squares Interpolation"

50 / 139 papers shown
Title
Demystifying Disagreement-on-the-Line in High Dimensions
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Yan Sun
Hamed Hassani
21
8
0
31 Jan 2023
A Simple Algorithm For Scaling Up Kernel Methods
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
16
0
0
26 Jan 2023
Gradient flow in the gaussian covariate model: exact solution of
  learning curves and multiple descent structures
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
High Dimensional Binary Classification under Label Shift: Phase
  Transition and Regularization
High Dimensional Binary Classification under Label Shift: Phase Transition and Regularization
Jiahui Cheng
Minshuo Chen
Hao Liu
Tuo Zhao
Wenjing Liao
36
0
0
01 Dec 2022
A Survey of Learning Curves with Bad Behavior: or How More Data Need Not
  Lead to Better Performance
A Survey of Learning Curves with Bad Behavior: or How More Data Need Not Lead to Better Performance
Marco Loog
T. Viering
23
1
0
25 Nov 2022
A Consistent Estimator for Confounding Strength
A Consistent Estimator for Confounding Strength
Luca Rendsburg
L. C. Vankadara
D. Ghoshdastidar
U. V. Luxburg
CML
31
2
0
03 Nov 2022
Interpolating Discriminant Functions in High-Dimensional Gaussian Latent
  Mixtures
Interpolating Discriminant Functions in High-Dimensional Gaussian Latent Mixtures
Xin Bing
M. Wegkamp
21
1
0
25 Oct 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
20
8
0
19 Sep 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule
  based on example difficulty
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
28
5
0
19 Sep 2022
Generalization Properties of NAS under Activation and Skip Connection
  Search
Generalization Properties of NAS under Activation and Skip Connection Search
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
AI4CE
28
15
0
15 Sep 2022
Information FOMO: The unhealthy fear of missing out on information. A
  method for removing misleading data for healthier models
Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models
Ethan Pickering
T. Sapsis
24
6
0
27 Aug 2022
Sharp Analysis of Sketch-and-Project Methods via a Connection to
  Randomized Singular Value Decomposition
Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition
Michal Derezinski
E. Rebrova
27
16
0
20 Aug 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
24
37
0
14 Jul 2022
Target alignment in truncated kernel ridge regression
Target alignment in truncated kernel ridge regression
Arash A. Amini
R. Baumgartner
Dai Feng
14
3
0
28 Jun 2022
Provable Generalization of Overparameterized Meta-learning Trained with
  SGD
Provable Generalization of Overparameterized Meta-learning Trained with SGD
Yu Huang
Yingbin Liang
Longbo Huang
MLT
26
8
0
18 Jun 2022
Beyond Ridge Regression for Distribution-Free Data
Beyond Ridge Regression for Distribution-Free Data
Koby Bibas
M. Feder
17
0
0
17 Jun 2022
Regularization-wise double descent: Why it occurs and how to eliminate
  it
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
25
11
0
03 Jun 2022
A Blessing of Dimensionality in Membership Inference through
  Regularization
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
32
18
0
27 May 2022
Proximal Estimation and Inference
Proximal Estimation and Inference
Alberto Quaini
F. Trojani
21
1
0
26 May 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
51
15
0
13 May 2022
An Equivalence Principle for the Spectrum of Random Inner-Product Kernel
  Matrices with Polynomial Scalings
An Equivalence Principle for the Spectrum of Random Inner-Product Kernel Matrices with Polynomial Scalings
Yue M. Lu
H. Yau
24
24
0
12 May 2022
Training-conditional coverage for distribution-free predictive inference
Training-conditional coverage for distribution-free predictive inference
Michael Bian
Rina Foygel Barber
34
25
0
07 May 2022
Benign Overfitting in Time Series Linear Models with Over-Parameterization
Benign Overfitting in Time Series Linear Models with Over-Parameterization
Shogo H. Nakakita
Masaaki Imaizumi
AI4TS
27
5
0
18 Apr 2022
Concentration of Random Feature Matrices in High-Dimensions
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
22
6
0
14 Apr 2022
Convergence of gradient descent for deep neural networks
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
49
7
0
07 Mar 2022
Estimation under Model Misspecification with Fake Features
Estimation under Model Misspecification with Fake Features
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
19
11
0
07 Mar 2022
Contrasting random and learned features in deep Bayesian linear
  regression
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
C. Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
41
59
0
14 Feb 2022
Exact Solutions of a Deep Linear Network
Exact Solutions of a Deep Linear Network
Liu Ziyin
Botao Li
Xiangmin Meng
ODL
19
21
0
10 Feb 2022
HARFE: Hard-Ridge Random Feature Expansion
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
38
14
0
06 Feb 2022
Benign Overfitting in Adversarially Robust Linear Classification
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
31
10
0
31 Dec 2021
Over-Parametrized Matrix Factorization in the Presence of Spurious
  Stationary Points
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
24
1
0
25 Dec 2021
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning
Yuege Xie
Bobby Shi
Hayden Schaeffer
Rachel A. Ward
78
9
0
07 Dec 2021
A generalization gap estimation for overparameterized models via the
  Langevin functional variance
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
38
1
0
07 Dec 2021
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
61
25
0
06 Dec 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow
  in the random feature model
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
37
13
0
22 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and
  Generalization Error
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
35
12
0
21 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear
  Model: A Signal Processing Perspective
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of
  Overparameterized Machine Learning
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
Interpolation can hurt robust generalization even when there is no noise
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
31
14
0
05 Aug 2021
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite
  Width Neural Networks
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite Width Neural Networks
Adityanarayanan Radhakrishnan
George Stefanakis
M. Belkin
Caroline Uhler
30
25
0
31 Jul 2021
The loss landscape of deep linear neural networks: a second-order
  analysis
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Can we globally optimize cross-validation loss? Quasiconvexity in ridge
  regression
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
William T. Stephenson
Zachary Frangella
Madeleine Udell
Tamara Broderick
14
12
0
19 Jul 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
31
17
0
04 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
24
43
0
04 Jul 2021
Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds, and
  Benign Overfitting
Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds, and Benign Overfitting
Frederic Koehler
Lijia Zhou
Danica J. Sutherland
Nathan Srebro
29
55
0
17 Jun 2021
Double Descent and Other Interpolation Phenomena in GANs
Double Descent and Other Interpolation Phenomena in GANs
Lorenzo Luzi
Yehuda Dar
Richard Baraniuk
23
5
0
07 Jun 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi-Hua Zhou
A. Gretton
MLT
33
35
0
06 Jun 2021
Fundamental tradeoffs between memorization and robustness in random
  features and neural tangent regimes
Fundamental tradeoffs between memorization and robustness in random features and neural tangent regimes
Elvis Dohmatob
25
9
0
04 Jun 2021
Previous
123
Next