Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.08560
Cited By
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
19 March 2019
Trevor Hastie
Andrea Montanari
Saharon Rosset
R. Tibshirani
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Surprises in High-Dimensional Ridgeless Least Squares Interpolation"
50 / 134 papers shown
Title
A dynamic view of the double descent
Vivek Shripad Borkar
60
0
0
03 May 2025
Sobolev norm inconsistency of kernel interpolation
Yunfei Yang
34
0
0
29 Apr 2025
auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
Arjun Subramonian
Elvis Dohmatob
24
0
0
14 Apr 2025
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
59
0
0
11 Apr 2025
Quantifying Overfitting along the Regularization Path for Two-Part-Code MDL in Supervised Classification
Xiaohan Zhu
Nathan Srebro
53
0
0
03 Mar 2025
Order-Robust Class Incremental Learning: Graph-Driven Dynamic Similarity Grouping
Guannan Lai
Yujie Li
Xiangkun Wang
J. Zhang
Tianrui Li
Xin Yang
CLL
47
0
0
27 Feb 2025
Analysis of Overparameterization in Continual Learning under a Linear Model
Daniel Goldfarb
Paul Hand
CLL
39
0
0
11 Feb 2025
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
54
2
0
24 Oct 2024
Efficient Optimization Algorithms for Linear Adversarial Training
Antônio H. Ribeiro
Thomas B. Schon
Dave Zahariah
Francis Bach
AAML
45
1
0
16 Oct 2024
Investigating the Impact of Model Complexity in Large Language Models
Jing Luo
Huiyuan Wang
Weiran Huang
34
0
0
01 Oct 2024
Breaking Neural Network Scaling Laws with Modularity
Akhilan Boopathy
Sunshine Jiang
William Yue
Jaedong Hwang
Abhiram Iyer
Ila Fiete
OOD
39
2
0
09 Sep 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
68
3
0
05 Sep 2024
Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning
Mohammadamin Banayeeanzade
Mahdi Soltanolkotabi
Mohammad Rostami
CLL
LRM
97
1
0
29 Aug 2024
Remove Symmetries to Control Model Expressivity and Improve Optimization
Liu Ziyin
Yizhou Xu
Isaac Chuang
AAML
38
1
0
28 Aug 2024
Meta-Analysis with Untrusted Data
Shiva Kaul
Geoffrey J. Gordon
CML
32
1
0
12 Jul 2024
Asymptotic theory of in-context learning by linear attention
Yue M. Lu
Mary I. Letey
Jacob A. Zavatone-Veth
Anindita Maiti
C. Pehlevan
23
10
0
20 May 2024
Thermodynamic limit in learning period three
Yuichiro Terasaki
Kohei Nakajima
40
1
0
12 May 2024
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Fanghui Liu
L. Dadi
V. Cevher
79
2
0
29 Apr 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
48
1
0
18 Apr 2024
High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile
Jérémie Bigot
Issa-Mbenard Dabo
Camille Male
31
4
0
29 Mar 2024
Random features models: a way to study the success of naive imputation
Alexis Ayme
Claire Boyer Lpsm
Aymeric Dieuleveut
Erwan Scornet
24
3
0
06 Feb 2024
Prevalidated ridge regression is a highly-efficient drop-in replacement for logistic regression for high-dimensional data
Angus Dempster
Geoffrey I. Webb
Daniel F. Schmidt
26
0
0
28 Jan 2024
Benign Overfitting and Grokking in ReLU Networks for XOR Cluster Data
Zhiwei Xu
Yutong Wang
Spencer Frei
Gal Vardi
Wei Hu
MLT
28
23
0
04 Oct 2023
Towards a statistical theory of data selection under weak supervision
Germain Kolossov
Andrea Montanari
Pulkit Tandon
14
14
0
25 Sep 2023
Adaptive Lasso, Transfer Lasso, and Beyond: An Asymptotic Perspective
Masaaki Takada
Hironori Fujisawa
16
1
0
30 Aug 2023
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
20
7
0
15 Jul 2023
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
David X. Wu
A. Sahai
26
2
0
23 Jun 2023
Quantifying lottery tickets under label noise: accuracy, calibration, and complexity
V. Arora
Daniele Irto
Sebastian Goldt
G. Sanguinetti
36
2
0
21 Jun 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
27
1
0
08 Jun 2023
Maximally Machine-Learnable Portfolios
Philippe Goulet Coulombe
Maximilian Göbel
21
3
0
08 Jun 2023
Unraveling Projection Heads in Contrastive Learning: Insights from Expansion and Shrinkage
Yu Gui
Cong Ma
Yiqiao Zhong
22
6
0
06 Jun 2023
Generalized equivalences between subsampling and ridge regularization
Pratik V. Patil
Jin-Hong Du
29
5
0
29 May 2023
Moment-Based Adjustments of Statistical Inference in High-Dimensional Generalized Linear Models
Kazuma Sawaya
Yoshimasa Uematsu
Masaaki Imaizumi
29
2
0
28 May 2023
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Tomoya Wakayama
Masaaki Imaizumi
51
0
0
25 May 2023
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Jin-Hong Du
Pratik V. Patil
Arun K. Kuchibhotla
16
11
0
25 Apr 2023
Analysis of Interpolating Regression Models and the Double Descent Phenomenon
T. McKelvey
4
0
0
17 Apr 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
21
15
0
13 Apr 2023
Mathematical Challenges in Deep Learning
V. Nia
Guojun Zhang
I. Kobyzev
Michael R. Metel
Xinlin Li
...
S. Hemati
M. Asgharian
Linglong Kong
Wulong Liu
Boxing Chen
AI4CE
VLM
37
1
0
24 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
38
0
0
24 Mar 2023
General Loss Functions Lead to (Approximate) Interpolation in High Dimensions
Kuo-Wei Lai
Vidya Muthukumar
21
5
0
13 Mar 2023
DSD
2
^2
2
: Can We Dodge Sparse Double Descent and Compress the Neural Network Worry-Free?
Victor Quétu
Enzo Tartaglione
26
7
0
02 Mar 2023
Extrapolated cross-validation for randomized ensembles
Jin-Hong Du
Pratik V. Patil
Kathryn Roeder
Arun K. Kuchibhotla
11
5
0
27 Feb 2023
Statistical Inference for Linear Functionals of Online SGD in High-dimensional Linear Regression
Bhavya Agrawalla
Krishnakumar Balasubramanian
Promit Ghosal
23
2
0
20 Feb 2023
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
32
19
0
13 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
28
10
0
03 Feb 2023
Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression
Mo Zhou
Rong Ge
27
2
0
01 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Edgar Dobriban
Hamed Hassani
21
8
0
31 Jan 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan T. Kelly
Semyon Malamud
11
0
0
26 Jan 2023
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
High Dimensional Binary Classification under Label Shift: Phase Transition and Regularization
Jiahui Cheng
Minshuo Chen
Hao Liu
Tuo Zhao
Wenjing Liao
29
0
0
01 Dec 2022
1
2
3
Next