Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.05946
Cited By
Recurrence is required to capture the representational dynamics of the human visual system
14 March 2019
Tim C Kietzmann
Courtney J. Spoerer
Lynn K. A. Sörensen
Radoslaw Martin Cichy
O. Hauk
N. Kriegeskorte
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Recurrence is required to capture the representational dynamics of the human visual system"
20 / 20 papers shown
Title
A recurrent vision transformer shows signatures of primate visual attention
Jonathan Morgan
Badr Albanna
James P. Herman
36
0
0
16 Feb 2025
Understanding the Role of Pathways in a Deep Neural Network
Lei Lyu
Chen Pang
Jihua Wang
35
3
0
28 Feb 2024
Brain-like Flexible Visual Inference by Harnessing Feedback-Feedforward Alignment
Tahereh Toosi
Elias B. Issa
21
2
0
31 Oct 2023
Characterising representation dynamics in recurrent neural networks for object recognition
Sushrut Thorat
Adrien Doerig
Tim C Kietzmann
16
3
0
23 Aug 2023
Are Deep Neural Networks Adequate Behavioural Models of Human Visual Perception?
Felix Wichmann
Robert Geirhos
32
25
0
26 May 2023
Harmonizing the object recognition strategies of deep neural networks with humans
Thomas Fel
Ivan Felipe
Drew Linsley
Thomas Serre
36
71
0
08 Nov 2022
Brain-like combination of feedforward and recurrent network components achieves prototype extraction and robust pattern recognition
Naresh B. Ravichandran
A. Lansner
Pawel Herman
32
4
0
30 Jun 2022
Guiding Visual Attention in Deep Convolutional Neural Networks Based on Human Eye Movements
Leonard E. van Dyck
Sebastian J. Denzler
W. Gruber
22
9
0
21 Jun 2022
SATBench: Benchmarking the speed-accuracy tradeoff in object recognition by humans and dynamic neural networks
Ajay Subramanian
Sara A. Price
Omkar Kumbhar
E. Sizikova
N. Majaj
D. Pelli
30
1
0
16 Jun 2022
Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI Brain Activity?
S. Oota
Jashn Arora
Veeral Agarwal
Mounika Marreddy
Manish Gupta
Raju Surampudi Bapi
33
38
0
03 May 2022
Capturing the objects of vision with neural networks
B. Peters
N. Kriegeskorte
OCL
33
56
0
07 Sep 2021
Towards robust vision by multi-task learning on monkey visual cortex
Shahd Safarani
Arne F. Nix
K. Willeke
Santiago A. Cadena
Kelli Restivo
George H. Denfield
A. Tolias
Fabian H. Sinz
OOD
19
52
0
29 Jul 2021
GLiT: Neural Architecture Search for Global and Local Image Transformer
Boyu Chen
Peixia Li
Chuming Li
Baopu Li
Lei Bai
Chen Lin
Ming Sun
Junjie Yan
Wanli Ouyang
ViT
35
85
0
07 Jul 2021
Bio-inspired Robustness: A Review
Harshitha Machiraju
Oh-hyeon Choung
P. Frossard
Michael H. Herzog
AAML
30
1
0
16 Mar 2021
Predictive coding feedback results in perceived illusory contours in a recurrent neural network
Zhaoyang Pang
Callum Biggs O'May
Bhavin Choksi
R. V. Rullen
26
30
0
03 Feb 2021
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency
Robert Geirhos
Kristof Meding
Felix Wichmann
19
117
0
30 Jun 2020
Going in circles is the way forward: the role of recurrence in visual inference
R. S. V. Bergen
N. Kriegeskorte
17
82
0
26 Mar 2020
A Time-Delay Feedback Neural Network for Discriminating Small, Fast-Moving Targets in Complex Dynamic Environments
Hongxin Wang
Huatian Wang
Jiannan Zhao
Cheng Hu
Jigen Peng
Shigang Yue
25
15
0
29 Dec 2019
Disentangling neural mechanisms for perceptual grouping
Junkyung Kim
Drew Linsley
Kalpit C. Thakkar
Thomas Serre
OCL
26
54
0
04 Jun 2019
Crowding in humans is unlike that in convolutional neural networks
Ben Lonnqvist
A. Clarke
R. Chakravarthi
21
11
0
01 Mar 2019
1