Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.05662
Cited By
v1
v2
v3
v4 (latest)
Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets
13 March 2019
Penghang Yin
J. Lyu
Shuai Zhang
Stanley Osher
Y. Qi
Jack Xin
MQ
LLMSV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets"
38 / 38 papers shown
Title
A Principled Bayesian Framework for Training Binary and Spiking Neural Networks
James A. Walker
M. Khajehnejad
Adeel Razi
BDL
144
0
0
23 May 2025
Choose Your Model Size: Any Compression by a Single Gradient Descent
Martin Genzel
Patrick Putzky
Pengfei Zhao
Siyang Song
Mattes Mollenhauer
Robert Seidel
Stefan Dietzel
Thomas Wollmann
105
0
0
03 Feb 2025
Optimizing Large Language Model Training Using FP4 Quantization
Ruizhe Wang
Yeyun Gong
Xiao Liu
Guoshuai Zhao
Ziyue Yang
Baining Guo
Zhengjun Zha
Peng Cheng
MQ
184
12
0
28 Jan 2025
In-context KV-Cache Eviction for LLMs via Attention-Gate
Zihao Zeng
Bokai Lin
Tianqi Hou
Hao Zhang
Zhijie Deng
109
2
0
15 Oct 2024
End-to-end Adaptive Dynamic Subsampling and Reconstruction for Cardiac MRI
George Yiasemis
Jan-Jakob Sonke
Jonas Teuwen
93
2
0
15 Mar 2024
Neural Lattice Reduction: A Self-Supervised Geometric Deep Learning Approach
Giovanni Luca Marchetti
Gabriele Cesa
Kumar Pratik
Arash Behboodi
143
2
0
14 Nov 2023
Learning a Consensus Sub-Network with Polarization Regularization and One Pass Training
Xiaoying Zhi
Varun Babbar
P. Sun
Fran Silavong
Ruibo Shi
Sean J. Moran
Sean Moran
140
1
0
17 Feb 2023
Blended Coarse Gradient Descent for Full Quantization of Deep Neural Networks
Penghang Yin
Shuai Zhang
J. Lyu
Stanley Osher
Y. Qi
Jack Xin
MQ
91
62
0
15 Aug 2018
PACT: Parameterized Clipping Activation for Quantized Neural Networks
Jungwook Choi
Zhuo Wang
Swagath Venkataramani
P. Chuang
Vijayalakshmi Srinivasan
K. Gopalakrishnan
MQ
80
955
0
16 May 2018
An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks
Qianxiao Li
Shuji Hao
92
76
0
04 Mar 2018
Loss-aware Weight Quantization of Deep Networks
Lu Hou
James T. Kwok
MQ
104
127
0
23 Feb 2018
Learning One Convolutional Layer with Overlapping Patches
Surbhi Goel
Adam R. Klivans
Raghu Meka
MLT
80
81
0
07 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
249
3,195
0
01 Feb 2018
BinaryRelax: A Relaxation Approach For Training Deep Neural Networks With Quantized Weights
Penghang Yin
Shuai Zhang
J. Lyu
Stanley Osher
Y. Qi
Jack Xin
MQ
86
79
0
19 Jan 2018
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima
S. Du
Jason D. Lee
Yuandong Tian
Barnabás Póczós
Aarti Singh
MLT
157
236
0
03 Dec 2017
Deep Learning as a Mixed Convex-Combinatorial Optimization Problem
A. Friesen
Pedro M. Domingos
46
20
0
31 Oct 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
183
337
0
10 Jun 2017
Training Quantized Nets: A Deeper Understanding
Hao Li
Soham De
Zheng Xu
Christoph Studer
H. Samet
Tom Goldstein
MQ
64
211
0
07 Jun 2017
Convergence Analysis of Two-layer Neural Networks with ReLU Activation
Yuanzhi Li
Yang Yuan
MLT
166
654
0
28 May 2017
Learning ReLUs via Gradient Descent
Mahdi Soltanolkotabi
MLT
96
183
0
10 May 2017
An Analytical Formula of Population Gradient for two-layered ReLU network and its Applications in Convergence and Critical Point Analysis
Yuandong Tian
MLT
218
217
0
02 Mar 2017
Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs
Alon Brutzkus
Amir Globerson
MLT
176
313
0
26 Feb 2017
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
399
1,055
0
10 Feb 2017
Deep Learning with Low Precision by Half-wave Gaussian Quantization
Zhaowei Cai
Xiaodong He
Jian Sun
Nuno Vasconcelos
MQ
142
505
0
03 Feb 2017
Quantization and Training of Low Bit-Width Convolutional Neural Networks for Object Detection
Penghang Yin
Shuai Zhang
Y. Qi
Jack Xin
MQ
169
42
0
19 Dec 2016
Trained Ternary Quantization
Chenzhuo Zhu
Song Han
Huizi Mao
W. Dally
MQ
153
1,035
0
04 Dec 2016
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations
Itay Hubara
Matthieu Courbariaux
Daniel Soudry
Ran El-Yaniv
Yoshua Bengio
MQ
168
1,871
0
22 Sep 2016
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
Shuchang Zhou
Yuxin Wu
Zekun Ni
Xinyu Zhou
He Wen
Yuheng Zou
MQ
135
2,090
0
20 Jun 2016
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
Mohammad Rastegari
Vicente Ordonez
Joseph Redmon
Ali Farhadi
MQ
181
4,369
0
16 Mar 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
214
1,348
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Matthieu Courbariaux
Yoshua Bengio
J. David
MQ
225
2,994
0
02 Nov 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
545
62,477
0
04 Jun 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
471
43,357
0
11 Feb 2015
Difference Target Propagation
Dong-Hyun Lee
Saizheng Zhang
Asja Fischer
Yoshua Bengio
AAML
127
353
0
23 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,575
0
04 Sep 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
297
14,978
1
21 Dec 2013
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
406
3,158
0
15 Aug 2013
1