Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.03825
Cited By
Interpolation Consistency Training for Semi-Supervised Learning
9 March 2019
Vikas Verma
Kenji Kawaguchi
Alex Lamb
Arno Solin
Arno Solin
Yoshua Bengio
David Lopez-Paz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpolation Consistency Training for Semi-Supervised Learning"
22 / 322 papers shown
Title
CMTS: Conditional Multiple Trajectory Synthesizer for Generating Safety-critical Driving Scenarios
Wenhao Ding
Mengdi Xu
Ding Zhao
27
52
0
17 Sep 2019
Snowball: Iterative Model Evolution and Confident Sample Discovery for Semi-Supervised Learning on Very Small Labeled Datasets
Yang Li
Jianhe Yuan
Zhiqun Zhao
Hao Sun
Zhihai He
8
6
0
04 Sep 2019
Semi-supervised Learning of Fetal Anatomy from Ultrasound
Jeremy Tan
Anselm Au
Qingjie Meng
Bernhard Kainz
17
10
0
30 Aug 2019
Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
Eric Arazo
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
16
815
0
08 Aug 2019
Sound source detection, localization and classification using consecutive ensemble of CRNN models
Slawomir Kapka
M. Lewandowski
11
66
0
02 Aug 2019
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
SSL
38
840
0
31 Jul 2019
HODGEPODGE: Sound event detection based on ensemble of semi-supervised learning methods
Ziqiang Shi
Liu Liu
Huibin Lin
Rujie Liu
Anyan Shi
14
20
0
17 Jul 2019
Asymptotic Bayes risk for Gaussian mixture in a semi-supervised setting
Marc Lelarge
Léo Miolane
14
28
0
08 Jul 2019
Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning
Phi Vu Tran
SSL
6
16
0
25 Jun 2019
Energy Models for Better Pseudo-Labels: Improving Semi-Supervised Classification with the 1-Laplacian Graph Energy
Angelica I. Aviles-Rivero
Nicolas Papadakis
Ruoteng Li
P. Sellars
Samar M. Alsaleh
R. Tan
Carola-Bibiane Schönlieb
24
3
0
20 Jun 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
30
98
0
16 Jun 2019
Selfie: Self-supervised Pretraining for Image Embedding
Trieu H. Trinh
Minh-Thang Luong
Quoc V. Le
SSL
11
111
0
07 Jun 2019
Semi-supervised semantic segmentation needs strong, varied perturbations
Geoff French
S. Laine
Timo Aila
Michal Mackiewicz
G. Finlayson
26
29
0
05 Jun 2019
Achieving Generalizable Robustness of Deep Neural Networks by Stability Training
Jan Laermann
Wojciech Samek
Nils Strodthoff
OOD
24
15
0
03 Jun 2019
Semi-Supervised Learning with Scarce Annotations
Sylvestre-Alvise Rebuffi
Sébastien Ehrhardt
Kai Han
Andrea Vedaldi
Andrew Zisserman
SSL
21
49
0
21 May 2019
Virtual Mixup Training for Unsupervised Domain Adaptation
Xudong Mao
Yun Ma
Zhenguo Yang
Yangbin Chen
Qing Li
30
52
0
10 May 2019
S4L: Self-Supervised Semi-Supervised Learning
Xiaohua Zhai
Avital Oliver
Alexander Kolesnikov
Lucas Beyer
SSL
VLM
29
786
0
09 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
17
2,985
0
06 May 2019
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
Zihang Dai
Eduard H. Hovy
Minh-Thang Luong
Quoc V. Le
32
2,286
0
29 Apr 2019
On Adversarial Mixup Resynthesis
Christopher Beckham
S. Honari
Vikas Verma
Alex Lamb
F. Ghadiri
R. Devon Hjelm
Yoshua Bengio
C. Pal
AAML
12
12
0
07 Mar 2019
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
199
243
0
14 Jun 2018
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
261
1,275
0
06 Mar 2017
Previous
1
2
3
4
5
6
7