ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.02610
  4. Cited By
Deep Random Splines for Point Process Intensity Estimation of Neural
  Population Data
v1v2v3v4v5v6 (latest)

Deep Random Splines for Point Process Intensity Estimation of Neural Population Data

6 March 2019
Gabriel Loaiza-Ganem
Sean M. Perkins
Karen E. Schroeder
Mark M. Churchland
John P. Cunningham
    3DPC
ArXiv (abs)PDFHTML

Papers citing "Deep Random Splines for Point Process Intensity Estimation of Neural Population Data"

11 / 11 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
524
10,591
0
17 Feb 2020
Differentiable Convex Optimization Layers
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
92
665
0
28 Oct 2019
Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections,
  Insights, and Extensions
Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions
Robert Tibshirani
96
43
0
12 May 2017
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
171
972
0
01 Mar 2017
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
202
417
0
11 Oct 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
433
18,361
0
27 May 2016
Linear dynamical neural population models through nonlinear embeddings
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
72
155
0
26 May 2016
Composing graphical models with neural networks for structured
  representations and fast inference
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDLOCL
92
485
0
20 Mar 2016
Variational Inference for Gaussian Process Modulated Poisson Processes
Variational Inference for Gaussian Process Modulated Poisson Processes
C. Lloyd
Tom Gunter
Michael A. Osborne
Stephen J. Roberts
77
117
0
02 Nov 2014
Adaptive Bayesian density regression for high-dimensional data
Adaptive Bayesian density regression for high-dimensional data
Weining Shen
S. Ghosal
95
26
0
11 Mar 2014
Scaling Multidimensional Inference for Structured Gaussian Processes
Scaling Multidimensional Inference for Structured Gaussian Processes
Elad Gilboa
Yunus Saatci
John P. Cunningham
121
61
0
18 Sep 2012
1