Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.01608
Cited By
Theoretical guarantees for sampling and inference in generative models with latent diffusions
5 March 2019
Belinda Tzen
Maxim Raginsky
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theoretical guarantees for sampling and inference in generative models with latent diffusions"
28 / 28 papers shown
Title
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
55
0
0
16 Apr 2025
Neural Guided Diffusion Bridges
Gefan Yang
Frank van der Meulen
Stefan Sommer
DiffM
65
0
0
17 Feb 2025
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
41
2
0
25 Oct 2024
How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework
Yinuo Ren
Haoxuan Chen
Grant M. Rotskoff
Lexing Ying
52
3
0
04 Oct 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
55
3
0
31 May 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
45
42
0
09 Feb 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
82
13
0
08 Feb 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
71
18
0
07 Feb 2024
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
39
41
0
04 Oct 2023
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
39
52
0
03 Jul 2023
Nonlinear controllability and function representation by neural stochastic differential equations
Tanya Veeravalli
Maxim Raginsky
DiffM
27
2
0
01 Dec 2022
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
44
81
0
02 Nov 2022
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
Xingchao Liu
Chengyue Gong
Qiang Liu
OOD
63
859
0
07 Sep 2022
Let us Build Bridges: Understanding and Extending Diffusion Generative Models
Xingchao Liu
Lemeng Wu
Mao Ye
Qiang Liu
DiffM
34
80
0
31 Aug 2022
Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for Inverse Problems
Giannis Daras
Y. Dagan
A. Dimakis
C. Daskalakis
BDL
31
15
0
18 Jun 2022
Convergence for score-based generative modeling with polynomial complexity
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
24
127
0
13 Jun 2022
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for Population Dynamics
Takeshi Koshizuka
Issei Sato
39
6
0
11 Apr 2022
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
18
101
0
30 Nov 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
35
27
0
21 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
24
60
0
27 May 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
29
22
0
25 Feb 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
Learning Continuous-Time Dynamics by Stochastic Differential Networks
Yingru Liu
Yucheng Xing
Xuewen Yang
Xin Wang
Jing Shi
Di Jin
Zhaoyue Chen
BDL
26
6
0
11 Jun 2020
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
27
451
0
18 May 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
30
104
0
11 May 2020
Stochasticity in Neural ODEs: An Empirical Study
V. Oganesyan
Alexandra Volokhova
Dmitry Vetrov
BDL
30
20
0
22 Feb 2020
Scalable Gradients for Stochastic Differential Equations
Xuechen Li
Ting-Kam Leonard Wong
Ricky T. Q. Chen
David Duvenaud
17
310
0
05 Jan 2020
1