Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.08336
Cited By
On the Sensitivity of Adversarial Robustness to Input Data Distributions
22 February 2019
G. Ding
Kry Yik-Chau Lui
Xiaomeng Jin
Luyu Wang
Ruitong Huang
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Sensitivity of Adversarial Robustness to Input Data Distributions"
23 / 23 papers shown
Title
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
G. Ding
Luyu Wang
Xiaomeng Jin
53
183
0
20 Feb 2019
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
88
1,772
0
30 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
118
786
0
30 Apr 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
164
3,171
0
01 Feb 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
88
967
0
29 Jan 2018
A3T: Adversarially Augmented Adversarial Training
Akram Erraqabi
A. Baratin
Yoshua Bengio
Simon Lacoste-Julien
AAML
61
9
0
12 Jan 2018
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
78
1,495
0
02 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
81
858
0
29 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
178
8,807
0
25 Aug 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
104
2,142
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
233
11,962
0
19 Jun 2017
Shake-Shake regularization
Xavier Gastaldi
3DPC
BDL
OOD
60
380
0
21 May 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
450
3,124
0
04 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
170
8,513
0
16 Aug 2016
Defensive Distillation is Not Robust to Adversarial Examples
Nicholas Carlini
D. Wagner
35
339
0
14 Jul 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
268
7,951
0
23 May 2016
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
100
4,878
0
14 Nov 2015
Learning with a Strong Adversary
Ruitong Huang
Bing Xu
Dale Schuurmans
Csaba Szepesvári
AAML
57
358
0
10 Nov 2015
Analysis of classifiers' robustness to adversarial perturbations
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
76
361
0
09 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
910
149,474
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
182
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
188
14,831
1
21 Dec 2013
Robustness and Regularization of Support Vector Machines
Huan Xu
Constantine Caramanis
Shie Mannor
110
471
0
25 Mar 2008
1