ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.07342
  4. Cited By
XONN: XNOR-based Oblivious Deep Neural Network Inference

XONN: XNOR-based Oblivious Deep Neural Network Inference

19 February 2019
M. Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin E. Lauter
F. Koushanfar
    FedML
    GNN
    BDL
ArXivPDFHTML

Papers citing "XONN: XNOR-based Oblivious Deep Neural Network Inference"

50 / 103 papers shown
Title
Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial Activations
  in Privacy-Preserving Deep Learning
Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial Activations in Privacy-Preserving Deep Learning
Karthik Garimella
N. Jha
Brandon Reagen
21
19
0
26 Jul 2021
Popcorn: Paillier Meets Compression For Efficient Oblivious Neural
  Network Inference
Popcorn: Paillier Meets Compression For Efficient Oblivious Neural Network Inference
Jun Wang
Chao Jin
S. Meftah
Khin Mi Mi Aung
UQCV
27
3
0
05 Jul 2021
MAGE: Nearly Zero-Cost Virtual Memory for Secure Computation
MAGE: Nearly Zero-Cost Virtual Memory for Secure Computation
Sam Kumar
David Culler
Raluca A. Popa
30
21
0
23 Jun 2021
Sphynx: ReLU-Efficient Network Design for Private Inference
Sphynx: ReLU-Efficient Network Design for Private Inference
Minsu Cho
Zahra Ghodsi
Brandon Reagen
S. Garg
C. Hegde
28
24
0
17 Jun 2021
Circa: Stochastic ReLUs for Private Deep Learning
Circa: Stochastic ReLUs for Private Deep Learning
Zahra Ghodsi
N. Jha
Brandon Reagen
S. Garg
32
34
0
15 Jun 2021
Adam in Private: Secure and Fast Training of Deep Neural Networks with
  Adaptive Moment Estimation
Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation
Nuttapong Attrapadung
Koki Hamada
Dai Ikarashi
Ryo Kikuchi
Takahiro Matsuda
Ibuki Mishina
Hiraku Morita
Jacob C. N. Schuldt
22
27
0
04 Jun 2021
SIRNN: A Math Library for Secure RNN Inference
SIRNN: A Math Library for Secure RNN Inference
Deevashwer Rathee
Mayank Rathee
R. Goli
Divya Gupta
Rahul Sharma
Nishanth Chandran
Aseem Rastogi
24
103
0
10 May 2021
GALA: Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural
  Networks
GALA: Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural Networks
Qiao Zhang
Chunsheng Xin
Hongyi Wu
27
49
0
05 May 2021
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
57
184
0
22 Apr 2021
Practical Two-party Privacy-preserving Neural Network Based on Secret
  Sharing
Practical Two-party Privacy-preserving Neural Network Based on Secret Sharing
ZhengQiang Ge
Zhipeng Zhou
Dong Guo
Qiang Li
FedML
10
4
0
10 Apr 2021
Enabling Homomorphically Encrypted Inference for Large DNN Models
Enabling Homomorphically Encrypted Inference for Large DNN Models
Guillermo Lloret-Talavera
Marc Jordà
Harald Servat
Fabian Boemer
C. Chauhan
S. Tomishima
Nilesh N. Shah
Antonio J. Peña
AI4CE
FedML
22
27
0
30 Mar 2021
Round and Communication Balanced Protocols for Oblivious Evaluation of
  Finite State Machines
Round and Communication Balanced Protocols for Oblivious Evaluation of Finite State Machines
Rafael Dowsley
Caleb Horst
Anderson C. A. Nascimento
15
0
0
20 Mar 2021
Practical Encrypted Computing for IoT Clients
Practical Encrypted Computing for IoT Clients
McKenzie van der Hagen
Brandon Lucia
15
7
0
11 Mar 2021
Privacy-Preserving Video Classification with Convolutional Neural
  Networks
Privacy-Preserving Video Classification with Convolutional Neural Networks
Sikha Pentyala
Rafael Dowsley
Martine De Cock
PICV
27
21
0
06 Feb 2021
FFConv: Fast Factorized Convolutional Neural Network Inference on
  Encrypted Data
FFConv: Fast Factorized Convolutional Neural Network Inference on Encrypted Data
Yu-Ching Lu
Jie Lin
Chao Jin
Zhe Wang
Min-man Wu
Khin Mi Mi Aung
Xiaoli Li
16
1
0
06 Feb 2021
Exploring Design and Governance Challenges in the Development of
  Privacy-Preserving Computation
Exploring Design and Governance Challenges in the Development of Privacy-Preserving Computation
Nitin Agrawal
Reuben Binns
Max Van Kleek
Kim Laine
N. Shadbolt
26
43
0
20 Jan 2021
Fast Privacy-Preserving Text Classification based on Secure Multiparty
  Computation
Fast Privacy-Preserving Text Classification based on Secure Multiparty Computation
A. Resende
Davis Railsback
Rafael Dowsley
Anderson C. A. Nascimento
Diego F. Aranha
28
20
0
18 Jan 2021
Secure Medical Image Analysis with CrypTFlow
Secure Medical Image Analysis with CrypTFlow
Javier Alvarez-Valle
Pratik Bhatu
Nishanth Chandran
Divya Gupta
A. Nori
Aseem Rastogi
Mayank Rathee
Rahul Sharma
Shubham Ugare
MedIm
18
13
0
09 Dec 2020
SoK: Training Machine Learning Models over Multiple Sources with Privacy
  Preservation
SoK: Training Machine Learning Models over Multiple Sources with Privacy Preservation
Lushan Song
Guopeng Lin
Jiaxuan Wang
Haoqi Wu
Wenqiang Ruan
Weili Han
34
9
0
06 Dec 2020
CrypTFlow2: Practical 2-Party Secure Inference
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
87
303
0
13 Oct 2020
GECKO: Reconciling Privacy, Accuracy and Efficiency in Embedded Deep
  Learning
GECKO: Reconciling Privacy, Accuracy and Efficiency in Embedded Deep Learning
Vasisht Duddu
A. Boutet
Virat Shejwalkar
GNN
24
4
0
02 Oct 2020
Accelerating 2PC-based ML with Limited Trusted Hardware
Accelerating 2PC-based ML with Limited Trusted Hardware
M. Nawaz
Aditya Gulati
Kunlong Liu
Vishwajeet Agrawal
P. Ananth
Trinabh Gupta
11
2
0
11 Sep 2020
POSEIDON: Privacy-Preserving Federated Neural Network Learning
POSEIDON: Privacy-Preserving Federated Neural Network Learning
Sinem Sav
Apostolos Pyrgelis
J. Troncoso-Pastoriza
D. Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean-Pierre Hubaux
FedML
19
153
0
01 Sep 2020
Trustworthy AI Inference Systems: An Industry Research View
Trustworthy AI Inference Systems: An Industry Research View
Rosario Cammarota
M. Schunter
Anand Rajan
Fabian Boemer
Ágnes Kiss
...
Aydin Aysu
Fateme S. Hosseini
Chengmo Yang
Eric Wallace
Pam Norton
25
14
0
10 Aug 2020
SOTERIA: In Search of Efficient Neural Networks for Private Inference
SOTERIA: In Search of Efficient Neural Networks for Private Inference
Anshul Aggarwal
Trevor E. Carlson
Reza Shokri
Shruti Tople
FedML
27
12
0
25 Jul 2020
BUNET: Blind Medical Image Segmentation Based on Secure UNET
BUNET: Blind Medical Image Segmentation Based on Secure UNET
S. Bian
Xiaowei Xu
Weiwen Jiang
Yiyu Shi
Takashi Sato
27
5
0
14 Jul 2020
SESAME: Software defined Enclaves to Secure Inference Accelerators with
  Multi-tenant Execution
SESAME: Software defined Enclaves to Secure Inference Accelerators with Multi-tenant Execution
Sarbartha Banerjee
Prakash Ramrakhyani
Shijia Wei
Mohit Tiwari
19
9
0
14 Jul 2020
Offline Model Guard: Secure and Private ML on Mobile Devices
Offline Model Guard: Secure and Private ML on Mobile Devices
Sebastian P. Bayerl
Tommaso Frassetto
Patrick Jauernig
Korbinian Riedhammer
A. Sadeghi
T. Schneider
Emmanuel Stapf
Christian Weinert
OffRL
23
45
0
05 Jul 2020
Private Speech Classification with Secure Multiparty Computation
Private Speech Classification with Secure Multiparty Computation
Kyle Bittner
Martine De Cock
Rafael Dowsley
16
1
0
01 Jul 2020
BoMaNet: Boolean Masking of an Entire Neural Network
BoMaNet: Boolean Masking of an Entire Neural Network
Anuj Dubey
Rosario Cammarota
Aydin Aysu
AAML
25
45
0
16 Jun 2020
CryptoNAS: Private Inference on a ReLU Budget
CryptoNAS: Private Inference on a ReLU Budget
Zahra Ghodsi
A. Veldanda
Brandon Reagen
S. Garg
12
86
0
15 Jun 2020
Secure Byzantine-Robust Machine Learning
Secure Byzantine-Robust Machine Learning
Lie He
Sai Praneeth Karimireddy
Martin Jaggi
OOD
26
58
0
08 Jun 2020
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function
  Secret Sharing
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
T. Ryffel
Pierre Tholoniat
D. Pointcheval
Francis R. Bach
FedML
28
94
0
08 Jun 2020
Secure Sum Outperforms Homomorphic Encryption in (Current) Collaborative
  Deep Learning
Secure Sum Outperforms Homomorphic Encryption in (Current) Collaborative Deep Learning
Derian Boer
Stefan Kramer
FedML
23
8
0
02 Jun 2020
Scalable Privacy-Preserving Distributed Learning
Scalable Privacy-Preserving Distributed Learning
D. Froelicher
J. Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
22
68
0
19 May 2020
Privacy in Deep Learning: A Survey
Privacy in Deep Learning: A Survey
Fatemehsadat Mirshghallah
Mohammadkazem Taram
Praneeth Vepakomma
Abhishek Singh
Ramesh Raskar
H. Esmaeilzadeh
FedML
19
136
0
25 Apr 2020
FALCON: Honest-Majority Maliciously Secure Framework for Private Deep
  Learning
FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning
Sameer Wagh
Shruti Tople
Fabrice Benhamouda
E. Kushilevitz
Prateek Mittal
T. Rabin
FedML
33
295
0
05 Apr 2020
Not All Features Are Equal: Discovering Essential Features for
  Preserving Prediction Privacy
Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy
Fatemehsadat Mireshghallah
Mohammadkazem Taram
A. Jalali
Ahmed T. Elthakeb
Dean Tullsen
H. Esmaeilzadeh
14
12
0
26 Mar 2020
ENSEI: Efficient Secure Inference via Frequency-Domain Homomorphic
  Convolution for Privacy-Preserving Visual Recognition
ENSEI: Efficient Secure Inference via Frequency-Domain Homomorphic Convolution for Privacy-Preserving Visual Recognition
S. Bian
Tianchen Wang
Masayuki Hiromoto
Yiyu Shi
Takashi Sato
FedML
29
30
0
11 Mar 2020
Optimizing Privacy-Preserving Outsourced Convolutional Neural Network
  Predictions
Optimizing Privacy-Preserving Outsourced Convolutional Neural Network Predictions
Minghui Li
Sherman S. M. Chow
Shengshan Hu
Yuejing Yan
Minxin Du
Zhibo Wang
6
45
0
22 Feb 2020
SynFi: Automatic Synthetic Fingerprint Generation
SynFi: Automatic Synthetic Fingerprint Generation
M. Riazi
Seyed M. Chavoshian
F. Koushanfar
19
16
0
16 Feb 2020
CryptoSPN: Privacy-preserving Sum-Product Network Inference
CryptoSPN: Privacy-preserving Sum-Product Network Inference
Amos Treiber
Alejandro Molina
Christian Weinert
T. Schneider
Kristian Kersting
21
10
0
03 Feb 2020
NASS: Optimizing Secure Inference via Neural Architecture Search
NASS: Optimizing Secure Inference via Neural Architecture Search
S. Bian
Weiwen Jiang
Qing Lu
Yiyu Shi
Takashi Sato
21
25
0
30 Jan 2020
Crypto-Oriented Neural Architecture Design
Crypto-Oriented Neural Architecture Design
Avital Shafran
Gil Segev
Shmuel Peleg
Yedid Hoshen
30
7
0
27 Nov 2019
Survey of Attacks and Defenses on Edge-Deployed Neural Networks
Survey of Attacks and Defenses on Edge-Deployed Neural Networks
Mihailo Isakov
V. Gadepally
K. Gettings
Michel A. Kinsy
AAML
22
31
0
27 Nov 2019
CHEETAH: An Ultra-Fast, Approximation-Free, and Privacy-Preserved Neural
  Network Framework based on Joint Obscure Linear and Nonlinear Computations
CHEETAH: An Ultra-Fast, Approximation-Free, and Privacy-Preserved Neural Network Framework based on Joint Obscure Linear and Nonlinear Computations
Qiao Zhang
Cong Wang
Chunsheng Xin
Hongyi Wu
18
4
0
12 Nov 2019
Secure Evaluation of Quantized Neural Networks
Secure Evaluation of Quantized Neural Networks
Anders Dalskov
Daniel E. Escudero
Marcel Keller
17
138
0
28 Oct 2019
CrypTFlow: Secure TensorFlow Inference
CrypTFlow: Secure TensorFlow Inference
Nishant Kumar
Mayank Rathee
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
101
236
0
16 Sep 2019
nGraph-HE2: A High-Throughput Framework for Neural Network Inference on
  Encrypted Data
nGraph-HE2: A High-Throughput Framework for Neural Network Inference on Encrypted Data
Fabian Boemer
Anamaria Costache
Rosario Cammarota
Casimir Wierzynski
GNN
18
171
0
12 Aug 2019
QUOTIENT: Two-Party Secure Neural Network Training and Prediction
QUOTIENT: Two-Party Secure Neural Network Training and Prediction
Nitin Agrawal
Ali Shahin Shamsabadi
Matt J. Kusner
Adria Gascon
30
212
0
08 Jul 2019
Previous
123
Next