ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06977
  4. Cited By
Evaluating model calibration in classification

Evaluating model calibration in classification

19 February 2019
Juozas Vaicenavicius
David Widmann
Carl R. Andersson
Fredrik Lindsten
Jacob Roll
Thomas B. Schon
    UQCV
ArXivPDFHTML

Papers citing "Evaluating model calibration in classification"

50 / 62 papers shown
Title
Performance Estimation in Binary Classification Using Calibrated Confidence
Performance Estimation in Binary Classification Using Calibrated Confidence
Juhani Kivimäki
Jakub Białek
W. Kuberski
J. Nurminen
58
0
0
08 May 2025
Similarity-Distance-Magnitude Universal Verification
Similarity-Distance-Magnitude Universal Verification
Allen Schmaltz
UQCV
AAML
265
0
0
27 Feb 2025
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
82
1
0
24 Feb 2025
Early Stopping in Contextual Bandits and Inferences
Early Stopping in Contextual Bandits and Inferences
Zihan Cui
59
0
0
05 Feb 2025
Rethinking Early Stopping: Refine, Then Calibrate
Rethinking Early Stopping: Refine, Then Calibrate
Eugene Berta
David Holzmüller
Michael I. Jordan
Francis Bach
75
0
0
31 Jan 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
71
2
0
28 Jan 2025
Confidence Calibration of Classifiers with Many Classes
Confidence Calibration of Classifiers with Many Classes
Adrien LeCoz
Stéphane Herbin
Faouzi Adjed
UQCV
44
1
0
05 Nov 2024
Calibrating Expressions of Certainty
Calibrating Expressions of Certainty
Peiqi Wang
Barbara D. Lam
Yingcheng Liu
Ameneh Asgari-Targhi
Yikang Shen
W. Wells
Tina Kapur
Polina Golland
43
1
0
06 Oct 2024
ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty
  Learning
ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning
Song Wang
Zhongdao Wang
Jiawei Yu
Wentong Li
Bailan Feng
Junbo Chen
Jianke Zhu
UQCV
46
3
0
26 Sep 2024
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
M. Chidambaram
Rong Ge
74
1
0
06 Jun 2024
Calibration of Continual Learning Models
Calibration of Continual Learning Models
Lanpei Li
Elia Piccoli
Andrea Cossu
Davide Bacciu
Vincenzo Lomonaco
CLL
47
2
0
11 Apr 2024
AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems
AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems
Clara Punzi
Roberto Pellungrini
Mattia Setzu
F. Giannotti
D. Pedreschi
27
5
0
09 Feb 2024
Calibration by Distribution Matching: Trainable Kernel Calibration
  Metrics
Calibration by Distribution Matching: Trainable Kernel Calibration Metrics
Charles Marx
Sofian Zalouk
Stefano Ermon
32
8
0
31 Oct 2023
Set Learning for Accurate and Calibrated Models
Set Learning for Accurate and Calibrated Models
Lukas Muttenthaler
Robert A. Vandermeulen
Qiuyi Zhang
Thomas Unterthiner
Klaus-Robert Muller
41
2
0
05 Jul 2023
Minimum-Risk Recalibration of Classifiers
Minimum-Risk Recalibration of Classifiers
Zeyu Sun
Dogyoon Song
Alfred Hero
43
5
0
18 May 2023
Measuring Classification Decision Certainty and Doubt
Measuring Classification Decision Certainty and Doubt
Alexander M. Berenbeim
Iain J. Cruickshank
Susmit Jha
Robert H. Thomson
Nathaniel D. Bastian
UQCV
15
4
0
25 Mar 2023
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Wenbo Hu
Xin Sun
Qiang liu
Wenbo Hu
Shu Wu
47
0
0
23 Mar 2023
Rethinking Confidence Calibration for Failure Prediction
Rethinking Confidence Calibration for Failure Prediction
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
Cheng-Lin Liu
UQCV
22
39
0
06 Mar 2023
On the Richness of Calibration
On the Richness of Calibration
Benedikt Höltgen
Robert C. Williamson
18
9
0
08 Feb 2023
Calibrating AI Models for Wireless Communications via Conformal
  Prediction
Calibrating AI Models for Wireless Communications via Conformal Prediction
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
37
6
0
15 Dec 2022
AdaFocal: Calibration-aware Adaptive Focal Loss
AdaFocal: Calibration-aware Adaptive Focal Loss
Arindam Ghosh
Thomas Schaaf
Matthew R. Gormley
FedML
UQCV
37
26
0
21 Nov 2022
Stop Measuring Calibration When Humans Disagree
Stop Measuring Calibration When Humans Disagree
Joris Baan
Wilker Aziz
Barbara Plank
Raquel Fernández
29
53
0
28 Oct 2022
Calibration tests beyond classification
Calibration tests beyond classification
David Widmann
Fredrik Lindsten
Dave Zachariah
35
17
0
21 Oct 2022
Class-wise and reduced calibration methods
Class-wise and reduced calibration methods
Michael Panchenko
Anes Benmerzoug
Miguel de Benito Delgado
23
0
0
07 Oct 2022
Variable-Based Calibration for Machine Learning Classifiers
Variable-Based Calibration for Machine Learning Classifiers
Mark Kelly
Padhraic Smyth
29
4
0
30 Sep 2022
GRASP: A Goodness-of-Fit Test for Classification Learning
GRASP: A Goodness-of-Fit Test for Classification Learning
Adel Javanmard
M. Mehrabi
22
0
0
05 Sep 2022
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
34
17
0
25 Aug 2022
Adaptive Temperature Scaling for Robust Calibration of Deep Neural
  Networks
Adaptive Temperature Scaling for Robust Calibration of Deep Neural Networks
Sérgio A. Balanya
Juan Maroñas
Daniel Ramos
OOD
43
14
0
31 Jul 2022
Which models are innately best at uncertainty estimation?
Which models are innately best at uncertainty estimation?
Ido Galil
Mohammed Dabbah
Ran El-Yaniv
UQCV
34
5
0
05 Jun 2022
What is Your Metric Telling You? Evaluating Classifier Calibration under
  Context-Specific Definitions of Reliability
What is Your Metric Telling You? Evaluating Classifier Calibration under Context-Specific Definitions of Reliability
John Kirchenbauer
Jacob Oaks
Eric Heim
UQCV
41
4
0
23 May 2022
Metrics of calibration for probabilistic predictions
Metrics of calibration for probabilistic predictions
Imanol Arrieta-Ibarra
Paman Gujral
Jonathan Tannen
M. Tygert
Cherie Xu
55
20
0
19 May 2022
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Bat-Sheva Einbinder
Yaniv Romano
Matteo Sesia
Yanfei Zhou
UQCV
34
49
0
12 May 2022
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
Markus Kängsepp
Kaspar Valk
Meelis Kull
35
3
0
16 Mar 2022
T-Cal: An optimal test for the calibration of predictive models
T-Cal: An optimal test for the calibration of predictive models
Donghwan Lee
Xinmeng Huang
Hamed Hassani
Yan Sun
27
20
0
03 Mar 2022
Calibrated Learning to Defer with One-vs-All Classifiers
Calibrated Learning to Defer with One-vs-All Classifiers
Rajeev Verma
Eric Nalisnick
26
43
0
08 Feb 2022
Understanding Square Loss in Training Overparametrized Neural Network
  Classifiers
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wei Cao
Zhenguo Li
UQCV
AAML
48
19
0
07 Dec 2021
The Box Size Confidence Bias Harms Your Object Detector
The Box Size Confidence Bias Harms Your Object Detector
Johannes Gilg
Torben Teepe
Fabian Herzog
Gerhard Rigoll
ObjD
23
4
0
03 Dec 2021
Robustness and Reliability When Training With Noisy Labels
Robustness and Reliability When Training With Noisy Labels
Amanda Olmin
Fredrik Lindsten
OOD
NoLa
24
14
0
07 Oct 2021
Can We Leverage Predictive Uncertainty to Detect Dataset Shift and
  Adversarial Examples in Android Malware Detection?
Can We Leverage Predictive Uncertainty to Detect Dataset Shift and Adversarial Examples in Android Malware Detection?
Deqiang Li
Tian Qiu
Shuo Chen
Qianmu Li
Shouhuai Xu
AAML
80
12
0
20 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
66
1,115
0
07 Jul 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable
  Expected Calibration Error
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
52
21
0
17 Jun 2021
Revisiting the Calibration of Modern Neural Networks
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
51
360
0
15 Jun 2021
Danish Fungi 2020 -- Not Just Another Image Recognition Dataset
Danish Fungi 2020 -- Not Just Another Image Recognition Dataset
Lukás Picek
Milan Šulc
Jirí Matas
J. Heilmann‐Clausen
T. Jeppesen
T. Læssøe
T. Frøslev
30
54
0
18 Mar 2021
Distribution-free uncertainty quantification for classification under
  label shift
Distribution-free uncertainty quantification for classification under label shift
Aleksandr Podkopaev
Aaditya Ramdas
UQCV
22
86
0
04 Mar 2021
Prostate Tissue Grading with Deep Quantum Measurement Ordinal Regression
Prostate Tissue Grading with Deep Quantum Measurement Ordinal Regression
Santiago Toledo-Cortés
Diego H. Useche
Fabio A. González
11
0
0
04 Mar 2021
On Calibration and Out-of-domain Generalization
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
30
153
0
20 Feb 2021
Combining Ensembles and Data Augmentation can Harm your Calibration
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
36
63
0
19 Oct 2020
A Generic Methodology for the Statistically Uniform & Comparable
  Evaluation of Automated Trading Platform Components
A Generic Methodology for the Statistically Uniform & Comparable Evaluation of Automated Trading Platform Components
A. Sokolovsky
Luca Arnaboldi
23
2
0
21 Sep 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDL
UQCV
32
18
0
20 Jun 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
Aleksandr Podkopaev
Aaditya Ramdas
UQCV
33
79
0
18 Jun 2020
12
Next