ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.04729
  4. Cited By
Accurate 3D Cell Segmentation using Deep Feature and CRF Refinement

Accurate 3D Cell Segmentation using Deep Feature and CRF Refinement

13 February 2019
Jiaxiang Jiang
Po-Yu Kao
S. Belteton
D. Szymanski
B. S. Manjunath
    3DV
ArXivPDFHTML

Papers citing "Accurate 3D Cell Segmentation using Deep Feature and CRF Refinement"

7 / 7 papers shown
Title
Brain Tumor Segmentation and Tractographic Feature Extraction from
  Structural MR Images for Overall Survival Prediction
Brain Tumor Segmentation and Tractographic Feature Extraction from Structural MR Images for Overall Survival Prediction
Po-Yu Kao
Thuyen Ngo
Angela Zhang
Jefferson W. Chen
B. S. Manjunath
46
84
0
20 Jul 2018
Group Normalization
Group Normalization
Yuxin Wu
Kaiming He
219
3,652
0
22 Mar 2018
Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution
  to the BRATS 2017 Challenge
Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge
Fabian Isensee
Philipp Kickingereder
Wolfgang Wick
Martin Bendszus
Klaus H. Maier-Hein
126
495
0
28 Feb 2018
Cell Segmentation in 3D Confocal Images using Supervoxel Merge-Forests
  with CNN-based Hypothesis Selection
Cell Segmentation in 3D Confocal Images using Supervoxel Merge-Forests with CNN-based Hypothesis Selection
Johannes Stegmaier
T. V. Spina
A. X. Falcão
A. Bartschat
Ralf Mikut
E. Meyerowitz
Alexandre Cunha
51
22
0
18 Oct 2017
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Özgün Çiçek
Ahmed Abdulkadir
S. Lienkamp
Thomas Brox
Olaf Ronneberger
3DV
3DPC
SSeg
3DH
148
6,523
0
21 Jun 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,099
0
18 May 2015
Efficient Inference in Fully Connected CRFs with Gaussian Edge
  Potentials
Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
Philipp Krahenbuhl
V. Koltun
121
3,453
0
20 Oct 2012
1