Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.03932
Cited By
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
11 February 2019
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning"
50 / 87 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
48
2
0
16 May 2025
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
94
0
0
25 Apr 2025
Temporal Score Analysis for Understanding and Correcting Diffusion Artifacts
Yu Cao
Zengqun Zhao
Ioannis Patras
Shaogang Gong
DiffM
62
0
0
20 Mar 2025
Enhancing Gradient-based Discrete Sampling via Parallel Tempering
Luxu Liang
Yuhang Jia
Feng Zhou
65
0
0
26 Feb 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Haoyang Zheng
Guang Lin
AI4CE
58
0
0
01 Feb 2025
CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling
Kaiyuan Zhang
Siyuan Cheng
Guangyu Shen
Bruno Ribeiro
Shengwei An
Pin-Yu Chen
Xinming Zhang
Ninghui Li
160
1
0
28 Jan 2025
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
Yibin Wang
Haochen Shi
Ligong Han
Dimitris N. Metaxas
Hao Wang
BDL
UQLM
116
8
0
28 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
52
4
0
14 Oct 2024
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
37
3
0
13 Oct 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
71
1
0
07 Jun 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
65
1
0
31 May 2024
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
44
4
0
13 May 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
48
5
0
04 Mar 2024
Bayesian Neural Network For Personalized Federated Learning Parameter Selection
Mengen Luo
E. Kuruoglu
FedML
42
0
0
25 Feb 2024
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Oleksandr Balabanov
Hampus Linander
UQCV
43
15
0
19 Feb 2024
Assessing Uncertainty Estimation Methods for 3D Image Segmentation under Distribution Shifts
Masoumeh Javanbakhat
Md Tasnimul Hasan
Cristoph Lippert
UQCV
OOD
31
1
0
10 Feb 2024
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian Inference
Siqi Kou
Lei Gan
Dequan Wang
Chongxuan Li
Zhijie Deng
BDL
DiffM
23
7
0
17 Oct 2023
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
46
1
0
12 Jul 2023
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Günter Klambauer
Sepp Hochreiter
UQCV
44
14
0
06 Jul 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
46
2
0
05 Jun 2023
Masked Bayesian Neural Networks : Theoretical Guarantee and its Posterior Inference
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Gyuseung Baek
Yongdai Kim
BDL
36
4
0
24 May 2023
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
51
3
0
05 Apr 2023
Implicit Visual Bias Mitigation by Posterior Estimate Sharpening of a Bayesian Neural Network
Rebecca S Stone
Nishant Ravikumar
A. Bulpitt
David C. Hogg
BDL
41
0
0
29 Mar 2023
To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning
Ildus Sadrtdinov
Dmitrii Pozdeev
Dmitry Vetrov
E. Lobacheva
37
4
0
06 Mar 2023
Bayesian Federated Inference for estimating Statistical Models based on Non-shared Multicenter Data sets
Marianne A Jonker
H. Pazira
Anthony C. C. Coolen
FedML
33
5
0
15 Feb 2023
Cyclic and Randomized Stepsizes Invoke Heavier Tails in SGD than Constant Stepsize
Mert Gurbuzbalaban
Yuanhan Hu
Umut Simsekli
Lingjiong Zhu
LRM
23
1
0
10 Feb 2023
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
39
36
0
10 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
34
5
0
09 Feb 2023
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
40
21
0
15 Dec 2022
Calibrating AI Models for Wireless Communications via Conformal Prediction
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
34
6
0
15 Dec 2022
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
31
4
0
20 Nov 2022
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
42
1
0
24 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
50
19
0
23 Oct 2022
Personalizing Text-to-Image Generation via Aesthetic Gradients
Víctor Gallego
50
16
0
25 Sep 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
21
9
0
02 Aug 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
64
71
0
19 Jul 2022
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
Gianluca Detommaso
Alberto Gasparin
A. Wilson
Cédric Archambeau
UQCV
BDL
34
3
0
17 Jul 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
35
34
0
29 Jun 2022
Federated Learning with Uncertainty via Distilled Predictive Distributions
Shreyansh P. Bhatt
Aishwarya Gupta
Piyush Rai
FedML
39
11
0
15 Jun 2022
Functional Ensemble Distillation
Coby Penso
Idan Achituve
Ethan Fetaya
FedML
37
2
0
05 Jun 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
70
75
0
28 May 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
82
8
0
27 May 2022
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors
Ravid Shwartz-Ziv
Micah Goldblum
Hossein Souri
Sanyam Kapoor
Chen Zhu
Yann LeCun
A. Wilson
UQCV
BDL
64
43
0
20 May 2022
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
51
10
0
17 May 2022
A PAC-Bayes oracle inequality for sparse neural networks
Maximilian F. Steffen
Mathias Trabs
UQCV
23
2
0
26 Apr 2022
Knowledge Removal in Sampling-based Bayesian Inference
Shaopeng Fu
Fengxiang He
Dacheng Tao
BDL
MU
30
27
0
24 Mar 2022
Cyclical Variational Bayes Monte Carlo for Efficient Multi-Modal Posterior Distributions Evaluation
F. Igea
Alice Cicirello
24
8
0
23 Feb 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
43
10
0
20 Feb 2022
Model Architecture Adaption for Bayesian Neural Networks
Duo Wang
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
UQCV
OOD
BDL
31
0
0
09 Feb 2022
1
2
Next