ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02918
  4. Cited By
Certified Adversarial Robustness via Randomized Smoothing

Certified Adversarial Robustness via Randomized Smoothing

8 February 2019
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
    AAML
ArXivPDFHTML

Papers citing "Certified Adversarial Robustness via Randomized Smoothing"

50 / 537 papers shown
Title
Robustness Threats of Differential Privacy
Robustness Threats of Differential Privacy
Nurislam Tursynbek
Aleksandr Petiushko
Ivan Oseledets
AAML
51
14
0
14 Dec 2020
DSRNA: Differentiable Search of Robust Neural Architectures
DSRNA: Differentiable Search of Robust Neural Architectures
Ramtin Hosseini
Xingyi Yang
P. Xie
OOD
AAML
34
51
0
11 Dec 2020
Locally optimal detection of stochastic targeted universal adversarial
  perturbations
Locally optimal detection of stochastic targeted universal adversarial perturbations
Amish Goel
P. Moulin
AAML
19
2
0
08 Dec 2020
Data-Dependent Randomized Smoothing
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Philip Torr
Guohao Li
UQCV
34
34
0
08 Dec 2020
Interpretable Graph Capsule Networks for Object Recognition
Interpretable Graph Capsule Networks for Object Recognition
Jindong Gu
Volker Tresp
FAtt
24
36
0
03 Dec 2020
How Robust are Randomized Smoothing based Defenses to Data Poisoning?
How Robust are Randomized Smoothing based Defenses to Data Poisoning?
Akshay Mehra
B. Kailkhura
Pin-Yu Chen
Jihun Hamm
OOD
AAML
28
32
0
02 Dec 2020
Boosting Adversarial Attacks on Neural Networks with Better Optimizer
Boosting Adversarial Attacks on Neural Networks with Better Optimizer
Heng Yin
Hengwei Zhang
Jin-dong Wang
Ruiyu Dou
AAML
42
8
0
01 Dec 2020
Guided Adversarial Attack for Evaluating and Enhancing Adversarial
  Defenses
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
33
92
0
30 Nov 2020
Almost Tight L0-norm Certified Robustness of Top-k Predictions against
  Adversarial Perturbations
Almost Tight L0-norm Certified Robustness of Top-k Predictions against Adversarial Perturbations
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Hongbin Liu
Neil Zhenqiang Gong
26
24
0
15 Nov 2020
A survey on practical adversarial examples for malware classifiers
A survey on practical adversarial examples for malware classifiers
Daniel Park
B. Yener
AAML
49
14
0
06 Nov 2020
Reliable Graph Neural Networks via Robust Aggregation
Reliable Graph Neural Networks via Robust Aggregation
Simon Geisler
Daniel Zügner
Stephan Günnemann
AAML
OOD
14
72
0
29 Oct 2020
Evaluating Robustness of Predictive Uncertainty Estimation: Are
  Dirichlet-based Models Reliable?
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable?
Anna-Kathrin Kopetzki
Bertrand Charpentier
Daniel Zügner
Sandhya Giri
Stephan Günnemann
31
45
0
28 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
682
0
19 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep
  Learning through Adversarial Robustness
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
44
48
0
19 Oct 2020
Higher-Order Certification for Randomized Smoothing
Higher-Order Certification for Randomized Smoothing
Jeet Mohapatra
Ching-Yun Ko
Tsui-Wei Weng
Pin-Yu Chen
Sijia Liu
Luca Daniel
AAML
25
44
0
13 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded
  Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
27
325
0
07 Oct 2020
InfoBERT: Improving Robustness of Language Models from An Information
  Theoretic Perspective
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective
Wei Ping
Shuohang Wang
Yu Cheng
Zhe Gan
R. Jia
Yue Liu
Jingjing Liu
AAML
59
113
0
05 Oct 2020
Adversarial Boot Camp: label free certified robustness in one epoch
Adversarial Boot Camp: label free certified robustness in one epoch
Ryan Campbell
Chris Finlay
Adam M. Oberman
AAML
28
0
0
05 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial
  Training
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
16
108
0
05 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan Kankanhalli
AAML
47
269
0
05 Oct 2020
Query complexity of adversarial attacks
Query complexity of adversarial attacks
Grzegorz Gluch
R. Urbanke
AAML
32
5
0
02 Oct 2020
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated
  Gradients
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi-An Ma
Yuan Yao
AAML
37
26
0
28 Sep 2020
Optimal Provable Robustness of Quantum Classification via Quantum
  Hypothesis Testing
Optimal Provable Robustness of Quantum Classification via Quantum Hypothesis Testing
Maurice Weber
Nana Liu
Yue Liu
Ce Zhang
Zhikuan Zhao
AAML
37
28
0
21 Sep 2020
Adversarial Training with Stochastic Weight Average
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
31
11
0
21 Sep 2020
Certifying Confidence via Randomized Smoothing
Certifying Confidence via Randomized Smoothing
Aounon Kumar
Alexander Levine
Soheil Feizi
Tom Goldstein
UQCV
36
39
0
17 Sep 2020
SoK: Certified Robustness for Deep Neural Networks
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Yue Liu
AAML
38
128
0
09 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
  Adversarial Attacks
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
Soheil Feizi
AAML
81
60
0
05 Sep 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep
  Learning in Adversarial and Out-of-Distribution Settings
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
26
2
0
03 Sep 2020
Stronger and Faster Wasserstein Adversarial Attacks
Stronger and Faster Wasserstein Adversarial Attacks
Kaiwen Wu
Allen Wang
Yaoliang Yu
AAML
22
32
0
06 Aug 2020
Practical Detection of Trojan Neural Networks: Data-Limited and
  Data-Free Cases
Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases
Ren Wang
Gaoyuan Zhang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
Meng Wang
AAML
36
148
0
31 Jul 2020
Membership Leakage in Label-Only Exposures
Membership Leakage in Label-Only Exposures
Zheng Li
Yang Zhang
34
239
0
30 Jul 2020
Stylized Adversarial Defense
Stylized Adversarial Defense
Muzammal Naseer
Salman Khan
Munawar Hayat
Fahad Shahbaz Khan
Fatih Porikli
GAN
AAML
28
16
0
29 Jul 2020
Robust Machine Learning via Privacy/Rate-Distortion Theory
Robust Machine Learning via Privacy/Rate-Distortion Theory
Ye Wang
Shuchin Aeron
Adnan Siraj Rakin
T. Koike-Akino
P. Moulin
OOD
24
6
0
22 Jul 2020
Backdoor Learning: A Survey
Backdoor Learning: A Survey
Yiming Li
Yong Jiang
Zhifeng Li
Shutao Xia
AAML
45
592
0
17 Jul 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
37
420
0
16 Jul 2020
Explicit Regularisation in Gaussian Noise Injections
Explicit Regularisation in Gaussian Noise Injections
A. Camuto
M. Willetts
Umut Simsekli
Stephen J. Roberts
Chris Holmes
37
55
0
14 Jul 2020
Towards a Theoretical Understanding of the Robustness of Variational
  Autoencoders
Towards a Theoretical Understanding of the Robustness of Variational Autoencoders
A. Camuto
M. Willetts
Stephen J. Roberts
Chris Holmes
Tom Rainforth
AAML
DRL
31
30
0
14 Jul 2020
Understanding Adversarial Examples from the Mutual Influence of Images
  and Perturbations
Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In-So Kweon
SSL
AAML
24
118
0
13 Jul 2020
Boundary thickness and robustness in learning models
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
18
38
0
09 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
53
537
0
01 Jul 2020
A Le Cam Type Bound for Adversarial Learning and Applications
A Le Cam Type Bound for Adversarial Learning and Applications
Qiuling Xu
Kevin Bello
Jean Honorio
AAML
28
1
0
01 Jul 2020
Subpopulation Data Poisoning Attacks
Subpopulation Data Poisoning Attacks
Matthew Jagielski
Giorgio Severi
Niklas Pousette Harger
Alina Oprea
AAML
SILM
24
115
0
24 Jun 2020
Learning to Generate Noise for Multi-Attack Robustness
Learning to Generate Noise for Multi-Attack Robustness
Divyam Madaan
Jinwoo Shin
Sung Ju Hwang
NoLa
AAML
25
25
0
22 Jun 2020
Defense against Adversarial Attacks in NLP via Dirichlet Neighborhood
  Ensemble
Defense against Adversarial Attacks in NLP via Dirichlet Neighborhood Ensemble
Yi Zhou
Xiaoqing Zheng
Cho-Jui Hsieh
Kai-Wei Chang
Xuanjing Huang
SILM
47
48
0
20 Jun 2020
Backdoor Attacks to Graph Neural Networks
Backdoor Attacks to Graph Neural Networks
Zaixi Zhang
Jinyuan Jia
Binghui Wang
Neil Zhenqiang Gong
GNN
24
213
0
19 Jun 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges
  and How to Overcome Them
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Defensive Approximation: Securing CNNs using Approximate Computing
Defensive Approximation: Securing CNNs using Approximate Computing
Amira Guesmi
Ihsen Alouani
Khaled N. Khasawneh
M. Baklouti
T. Frikha
Mohamed Abid
Nael B. Abu-Ghazaleh
AAML
19
37
0
13 Jun 2020
Adversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive Learning
Minseon Kim
Jihoon Tack
Sung Ju Hwang
SSL
28
248
0
13 Jun 2020
D-square-B: Deep Distribution Bound for Natural-looking Adversarial
  Attack
D-square-B: Deep Distribution Bound for Natural-looking Adversarial Attack
Qiuling Xu
Guanhong Tao
Xiangyu Zhang
AAML
27
2
0
12 Jun 2020
Provable tradeoffs in adversarially robust classification
Provable tradeoffs in adversarially robust classification
Yan Sun
Hamed Hassani
David Hong
Alexander Robey
23
54
0
09 Jun 2020
Previous
123...101189
Next