Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.02302
Cited By
Neural Network Attributions: A Causal Perspective
6 February 2019
Aditya Chattopadhyay
Piyushi Manupriya
Anirban Sarkar
V. Balasubramanian
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Network Attributions: A Causal Perspective"
31 / 31 papers shown
Title
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
79
15
0
10 Jan 2025
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Zhifeng Hao
54
7
0
31 Dec 2024
LLMScan: Causal Scan for LLM Misbehavior Detection
Mengdi Zhang
Kai Kiat Goh
Peixin Zhang
Jun Sun
Rose Lin Xin
Hongyu Zhang
25
0
0
22 Oct 2024
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
35
0
0
08 Jul 2023
Causal Analysis for Robust Interpretability of Neural Networks
Ola Ahmad
Nicolas Béreux
Loïc Baret
V. Hashemi
Freddy Lecue
CML
29
3
0
15 May 2023
Towards Learning and Explaining Indirect Causal Effects in Neural Networks
Abbaavaram Gowtham Reddy
Saketh Bachu
Harsh Nilesh Pathak
Ben Godfrey
V. Balasubramanian
V. Varshaneya
Satya Narayanan Kar
CML
31
0
0
24 Mar 2023
SUNY: A Visual Interpretation Framework for Convolutional Neural Networks from a Necessary and Sufficient Perspective
Xiwei Xuan
Ziquan Deng
Hsuan-Tien Lin
Z. Kong
Kwan-Liu Ma
AAML
FAtt
35
2
0
01 Mar 2023
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
24
10
0
06 Feb 2023
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
32
4
0
09 Nov 2022
Causal Explanation for Reinforcement Learning: Quantifying State and Temporal Importance
Xiaoxiao Wang
Fanyu Meng
Xin Liu
Z. Kong
Xin Chen
XAI
CML
FAtt
39
4
0
24 Oct 2022
Adaptive Fairness Improvement Based on Causality Analysis
Mengdi Zhang
Jun Sun
24
31
0
15 Sep 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAI
FAtt
LRM
26
62
0
29 Jul 2022
A Causal Lens for Controllable Text Generation
Zhiting Hu
Erran L. Li
45
59
0
22 Jan 2022
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
34
21
0
10 Dec 2021
Inducing Causal Structure for Interpretable Neural Networks
Atticus Geiger
Zhengxuan Wu
Hanson Lu
J. Rozner
Elisa Kreiss
Thomas Icard
Noah D. Goodman
Christopher Potts
CML
OOD
35
70
0
01 Dec 2021
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
33
12
0
24 Nov 2021
Double Trouble: How to not explain a text classifier's decisions using counterfactuals synthesized by masked language models?
Thang M. Pham
Trung H. Bui
Long Mai
Anh Totti Nguyen
21
7
0
22 Oct 2021
Detecting Multi-Sensor Fusion Errors in Advanced Driver-Assistance Systems
Ziyuan Zhong
Zhisheng Hu
Shengjian Guo
Xinyang Zhang
Zhenyu Zhong
Baishakhi Ray
AAML
28
23
0
14 Sep 2021
Explainable artificial intelligence (XAI) in deep learning-based medical image analysis
Bas H. M. van der Velden
Hugo J. Kuijf
K. Gilhuijs
M. Viergever
XAI
35
638
0
22 Jul 2021
Causal Abstractions of Neural Networks
Atticus Geiger
Hanson Lu
Thomas Icard
Christopher Potts
NAI
CML
17
218
0
06 Jun 2021
Did I do that? Blame as a means to identify controlled effects in reinforcement learning
Oriol Corcoll
Youssef Mohamed
Raul Vicente
18
3
0
01 Jun 2021
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
71
13
0
25 Apr 2021
Improving Attribution Methods by Learning Submodular Functions
Piyushi Manupriya
Tarun Ram Menta
S. Jagarlapudi
V. Balasubramanian
TDI
22
6
0
19 Apr 2021
Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things
Jing Zhang
Dacheng Tao
36
462
0
17 Nov 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
213
0
09 Mar 2020
Biophysical models of cis-regulation as interpretable neural networks
Ammar Tareen
J. Kinney
AI4CE
15
22
0
30 Dec 2019
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
13
278
0
29 Oct 2019
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
34
205
0
27 Oct 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
27
66
0
16 Jul 2019
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
232
200
0
06 Jul 2017
1