ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.01955
  4. Cited By
On the Choice of Modeling Unit for Sequence-to-Sequence Speech
  Recognition

On the Choice of Modeling Unit for Sequence-to-Sequence Speech Recognition

5 February 2019
Kazuki Irie
Rohit Prabhavalkar
Anjuli Kannan
A. Bruguier
David Rybach
Patrick Nguyen
ArXivPDFHTML

Papers citing "On the Choice of Modeling Unit for Sequence-to-Sequence Speech Recognition"

12 / 12 papers shown
Title
Recent Advances in End-to-End Automatic Speech Recognition
Recent Advances in End-to-End Automatic Speech Recognition
Jinyu Li
VLM
40
363
0
02 Nov 2021
A Unified Speaker Adaptation Approach for ASR
A Unified Speaker Adaptation Approach for ASR
Yingzhu Zhao
Chongjia Ni
C. Leung
Chenyu You
Chng Eng Siong
B. Ma
CLL
92
9
0
16 Oct 2021
Deep Shallow Fusion for RNN-T Personalization
Deep Shallow Fusion for RNN-T Personalization
Duc Le
Gil Keren
Julian Chan
Jay Mahadeokar
Christian Fuegen
M. Seltzer
21
77
0
16 Nov 2020
Multitask Training with Text Data for End-to-End Speech Recognition
Multitask Training with Text Data for End-to-End Speech Recognition
Peidong Wang
Tara N. Sainath
Ron J. Weiss
18
27
0
27 Oct 2020
Hybrid Autoregressive Transducer (hat)
Hybrid Autoregressive Transducer (hat)
Ehsan Variani
David Rybach
Cyril Allauzen
Michael Riley
21
158
0
12 Mar 2020
Imputer: Sequence Modelling via Imputation and Dynamic Programming
Imputer: Sequence Modelling via Imputation and Dynamic Programming
William Chan
Chitwan Saharia
Geoffrey E. Hinton
Mohammad Norouzi
Navdeep Jaitly
BDL
AI4TS
21
114
0
20 Feb 2020
Generating diverse and natural text-to-speech samples using a quantized
  fine-grained VAE and auto-regressive prosody prior
Generating diverse and natural text-to-speech samples using a quantized fine-grained VAE and auto-regressive prosody prior
Guangzhi Sun
Yu Zhang
Ron J. Weiss
Yuan Cao
Heiga Zen
Andrew Rosenberg
Bhuvana Ramabhadran
Yonghui Wu
DiffM
36
92
0
06 Feb 2020
G2G: TTS-Driven Pronunciation Learning for Graphemic Hybrid ASR
G2G: TTS-Driven Pronunciation Learning for Graphemic Hybrid ASR
Duc Le
T. Koehler
Christian Fuegen
M. Seltzer
30
16
0
22 Oct 2019
Language Modeling with Deep Transformers
Language Modeling with Deep Transformers
Kazuki Irie
Albert Zeyer
Ralf Schluter
Hermann Ney
KELM
43
171
0
10 May 2019
RWTH ASR Systems for LibriSpeech: Hybrid vs Attention -- w/o Data
  Augmentation
RWTH ASR Systems for LibriSpeech: Hybrid vs Attention -- w/o Data Augmentation
Christoph Luscher
Eugen Beck
Kazuki Irie
M. Kitza
Wilfried Michel
Albert Zeyer
Ralf Schluter
Hermann Ney
VLM
13
234
0
08 May 2019
Direct speech-to-speech translation with a sequence-to-sequence model
Direct speech-to-speech translation with a sequence-to-sequence model
Ye Jia
Ron J. Weiss
Fadi Biadsy
Wolfgang Macherey
Melvin Johnson
Zhehuai Chen
Yonghui Wu
21
223
0
12 Apr 2019
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Zhehuai Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
718
6,750
0
26 Sep 2016
1