Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.00629
Cited By
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
2 February 2019
Belhal Karimi
B. Miasojedow
Eric Moulines
Hoi-To Wai
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-asymptotic Analysis of Biased Stochastic Approximation Scheme"
31 / 31 papers shown
Title
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Sobihan Surendran
Antoine Godichon-Baggioni
Adeline Fermanian
Sylvain Le Corff
45
1
0
05 Feb 2024
Central Limit Theorem for Two-Timescale Stochastic Approximation with Markovian Noise: Theory and Applications
Jie Hu
Vishwaraj Doshi
Do Young Eun
40
4
0
17 Jan 2024
Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks and Queueing Systems
Céline Comte
Matthieu Jonckheere
J. Sanders
Albert Senen-Cerda
30
0
0
05 Dec 2023
Zero-Regret Performative Prediction Under Inequality Constraints
Wenjing Yan
Xuanyu Cao
28
7
0
22 Sep 2023
Towards frugal unsupervised detection of subtle abnormalities in medical imaging
Geoffroy Oudoumanessah
Carole Lartizien
M. Dojat
Florence Forbes
MedIm
25
2
0
04 Sep 2023
State and parameter learning with PaRIS particle Gibbs
Gabriel Victorino Cardoso
Yazid Janati
Sylvain Le Corff
Eric Moulines
Jimmy Olsson
36
6
0
02 Jan 2023
When Do Curricula Work in Federated Learning?
Saeed Vahidian
Sreevatsank Kadaveru
Woo-Ram Baek
Weijia Wang
Vyacheslav Kungurtsev
Chong Chen
M. Shah
Bill Lin
FedML
42
11
0
24 Dec 2022
A Single-Timescale Analysis For Stochastic Approximation With Multiple Coupled Sequences
Han Shen
Tianyi Chen
57
15
0
21 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
37
8
0
13 Jun 2022
Learning from time-dependent streaming data with online stochastic algorithms
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
42
3
0
25 May 2022
Convergence proof for stochastic gradient descent in the training of deep neural networks with ReLU activation for constant target functions
Martin Hutzenthaler
Arnulf Jentzen
Katharina Pohl
Adrian Riekert
Luca Scarpa
MLT
34
6
0
13 Dec 2021
Online Estimation and Optimization of Utility-Based Shortfall Risk
Vishwajit Hegde
Arvind S. Menon
L. A. Prashanth
Krishna Jagannathan
24
2
0
16 Nov 2021
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
42
12
0
22 Jun 2021
Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic Approximation under Markovian Noise
Thinh T. Doan
24
15
0
04 Apr 2021
A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
Arnulf Jentzen
Adrian Riekert
MLT
40
13
0
01 Apr 2021
Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes
Steffen Dereich
Sebastian Kassing
34
27
0
16 Feb 2021
A Stochastic Path-Integrated Differential EstimatoR Expectation Maximization Algorithm
G. Fort
Eric Moulines
Hoi-To Wai
TPM
27
7
0
30 Nov 2020
Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and Finite-Time Performance
Thinh T. Doan
14
45
0
03 Nov 2020
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
19
37
0
12 Jun 2020
Non-asymptotic Convergence Analysis of Two Time-scale (Natural) Actor-Critic Algorithms
Tengyu Xu
Zhe Wang
Yingbin Liang
26
57
0
07 May 2020
Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms
Tengyu Xu
Zhe Wang
Yingbin Liang
27
25
0
27 Apr 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
33
75
0
09 Apr 2020
Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation
Arnulf Jentzen
Timo Welti
27
15
0
03 Mar 2020
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
41
55
0
25 Feb 2020
Explicit Mean-Square Error Bounds for Monte-Carlo and Linear Stochastic Approximation
Shuhang Chen
Adithya M. Devraj
Ana Bušić
Sean P. Meyn
21
31
0
07 Feb 2020
Finite-Time Analysis and Restarting Scheme for Linear Two-Time-Scale Stochastic Approximation
Thinh T. Doan
21
36
0
23 Dec 2019
Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part I: Methodology and Experiments
A. F. Vidal
Valentin De Bortoli
Marcelo Pereyra
Alain Durmus
26
7
0
26 Nov 2019
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods
Belhal Karimi
Hoi-To Wai
Eric Moulines
M. Lavielle
32
27
0
28 Oct 2019
Full error analysis for the training of deep neural networks
C. Beck
Arnulf Jentzen
Benno Kuckuck
22
47
0
30 Sep 2019
A Multistep Lyapunov Approach for Finite-Time Analysis of Biased Stochastic Approximation
Gang Wang
Bingcong Li
G. Giannakis
33
28
0
10 Sep 2019
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
1