ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.00621
  4. Cited By
On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex
  Learning

On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning

2 February 2019
Jian Li
Xuanyuan Luo
Mingda Qiao
ArXivPDFHTML

Papers citing "On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning"

27 / 27 papers shown
Title
NeuralGrok: Accelerate Grokking by Neural Gradient Transformation
NeuralGrok: Accelerate Grokking by Neural Gradient Transformation
Xinyu Zhou
Simin Fan
Martin Jaggi
Jie Fu
41
0
0
24 Apr 2025
Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
Sijia Zhou
Yunwen Lei
Ata Kabán
34
0
0
03 Apr 2025
Stability-based Generalization Bounds for Variational Inference
Stability-based Generalization Bounds for Variational Inference
Yadi Wei
R. Khardon
BDL
49
0
0
17 Feb 2025
Understanding the Generalization Error of Markov algorithms through Poissonization
Understanding the Generalization Error of Markov algorithms through Poissonization
Benjamin Dupuis
Maxime Haddouche
George Deligiannidis
Umut Simsekli
49
0
0
11 Feb 2025
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
89
1
0
25 Nov 2024
When Foresight Pruning Meets Zeroth-Order Optimization: Efficient
  Federated Learning for Low-Memory Devices
When Foresight Pruning Meets Zeroth-Order Optimization: Efficient Federated Learning for Low-Memory Devices
Peng Zhang
Yingjie Liu
Yingbo Zhou
Xiao Du
Xian Wei
Ting Wang
Mingsong Chen
FedML
32
1
0
08 May 2024
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
48
2
0
26 Apr 2024
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Renchunzi Xie
Ambroise Odonnat
Vasilii Feofanov
I. Redko
Jianfeng Zhang
Bo An
UQCV
80
1
0
17 Jan 2024
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
62
1
0
08 Nov 2023
Generalization Bounds for Label Noise Stochastic Gradient Descent
Generalization Bounds for Label Noise Stochastic Gradient Descent
Jung Eun Huh
Patrick Rebeschini
13
1
0
01 Nov 2023
Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic
  Gradient Descent
Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic Gradient Descent
Lingjiong Zhu
Mert Gurbuzbalaban
Anant Raj
Umut Simsekli
34
6
0
20 May 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Does Federated Learning Really Need Backpropagation?
Does Federated Learning Really Need Backpropagation?
H. Feng
Tianyu Pang
Chao Du
Wei Chen
Shuicheng Yan
Min Lin
FedML
36
10
0
28 Jan 2023
Limitations of Information-Theoretic Generalization Bounds for Gradient
  Descent Methods in Stochastic Convex Optimization
Limitations of Information-Theoretic Generalization Bounds for Gradient Descent Methods in Stochastic Convex Optimization
Mahdi Haghifam
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
Daniel M. Roy
Gintare Karolina Dziugaite
31
17
0
27 Dec 2022
Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
  with List Stability
Exploring the Algorithm-Dependent Generalization of AUPRC Optimization with List Stability
Peisong Wen
Qianqian Xu
Zhiyong Yang
Yuan He
Qingming Huang
53
10
0
27 Sep 2022
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for
  Full-Batch GD
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
Konstantinos E. Nikolakakis
Farzin Haddadpour
Amin Karbasi
Dionysios S. Kalogerias
43
17
0
26 Apr 2022
Sharper Utility Bounds for Differentially Private Models
Sharper Utility Bounds for Differentially Private Models
Yilin Kang
Yong Liu
Jian Li
Weiping Wang
FedML
35
3
0
22 Apr 2022
Stability Based Generalization Bounds for Exponential Family Langevin
  Dynamics
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
34
8
0
09 Jan 2022
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Fu Wei
Chenglong Bao
Yang Liu
30
19
0
04 Oct 2021
Generalization Bounds For Meta-Learning: An Information-Theoretic
  Analysis
Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis
Qi Chen
Changjian Shui
M. Marchand
40
43
0
29 Sep 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical
  Viewpoints
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
26
13
0
19 Jul 2021
Stability of SGD: Tightness Analysis and Improved Bounds
Stability of SGD: Tightness Analysis and Improved Bounds
Yikai Zhang
Wenjia Zhang
Sammy Bald
Vamsi Pingali
Chao Chen
Mayank Goswami
MLT
27
36
0
10 Feb 2021
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
32
94
0
15 Jun 2020
Fine-Grained Analysis of Stability and Generalization for Stochastic
  Gradient Descent
Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent
Yunwen Lei
Yiming Ying
MLT
35
126
0
15 Jun 2020
Sharpened Generalization Bounds based on Conditional Mutual Information
  and an Application to Noisy, Iterative Algorithms
Sharpened Generalization Bounds based on Conditional Mutual Information and an Application to Noisy, Iterative Algorithms
Mahdi Haghifam
Jeffrey Negrea
Ashish Khisti
Daniel M. Roy
Gintare Karolina Dziugaite
34
105
0
27 Apr 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent
  Estimates
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
115
147
0
06 Nov 2019
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
127
577
0
27 Feb 2015
1