Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.00450
Cited By
v1
v2
v3
v4 (latest)
Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders
1 February 2019
Ioana Bica
Ahmed Alaa
M. Schaar
BDL
CML
AI4TS
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders"
36 / 36 papers shown
Title
When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Yahya Aalaila
Gerrit Großmann
Sumantrak Mukherjee
Jonas Wahl
Sebastian Vollmer
CML
LRM
150
0
0
31 Mar 2025
DeCaFlow: A Deconfounding Causal Generative Model
Alejandro Almodóvar
Adrián Javaloy
J. Parras
Santiago Zazo
Isabel Valera
CML
82
0
0
19 Mar 2025
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
82
2
0
01 Mar 2024
Right on Time: Revising Time Series Models by Constraining their Explanations
Maurice Kraus
David Steinmann
Antonia Wüst
Andre Kokozinski
Kristian Kersting
AI4TS
94
4
0
20 Feb 2024
Clairvoyance: A Pipeline Toolkit for Medical Time Series
Daniel Jarrett
Chang Jo Kim
Ioana Bica
Zhaozhi Qian
A. Ercole
M. Schaar
AI4TS
89
36
0
28 Oct 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
219
2
0
16 Oct 2023
CTP:A Causal Interpretable Model for Non-Communicable Disease Progression Prediction
Zhoujian Sun
Wenzhuo Zhang
Zhengxing Huang
Nai Ding
Cheng Luo
CML
97
2
0
18 Aug 2023
Deep Causal Learning for Robotic Intelligence
Yongqian Li
CML
82
5
0
23 Dec 2022
On How AI Needs to Change to Advance the Science of Drug Discovery
Kieran Didi
Matej Zečević
CML
66
1
0
23 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
125
11
0
07 Nov 2022
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OOD
CML
72
22
0
08 Oct 2022
Time Series Causal Link Estimation under Hidden Confounding using Knockoff Interventions
V. T. Trifunov
M. Shadaydeh
Joachim Denzler
CML
BDL
73
3
0
23 Sep 2022
Estimating individual treatment effects under unobserved confounding using binary instruments
Dennis Frauen
Stefan Feuerriegel
CML
91
20
0
17 Aug 2022
Variational Temporal Deconfounder for Individualized Treatment Effect Estimation from Longitudinal Observational Data
Zheng Feng
M. Prosperi
Jiang Bian
CML
52
0
0
23 Jul 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
57
52
0
16 Jun 2022
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Changchang Yin
Ruoqi Liu
Jeffrey Caterino
Ping Zhang
OffRL
102
5
0
19 May 2022
Estimating average causal effects from patient trajectories
Dennis Frauen
Tobias Hatt
Valentyn Melnychuk
Stefan Feuerriegel
OOD
CML
95
25
0
02 Mar 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
92
32
0
25 Feb 2022
Causal Knowledge Guided Societal Event Forecasting
Songgaojun Deng
Huzefa Rangwala
Yue Ning
AI4TS
61
2
0
10 Dec 2021
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
94
22
0
06 Dec 2021
A Taxonomy for Inference in Causal Model Families
Matej Zevcević
Devendra Singh Dhami
Kristian Kersting
89
1
0
22 Oct 2021
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
Devendra Singh Dhami
Petar Velickovic
Kristian Kersting
AI4CE
CML
134
56
0
09 Sep 2021
DeepExpress: Heterogeneous and Coupled Sequence Modeling for Express Delivery Prediction
Siyuan Ren
Bin Guo
LongBing Cao
Ke Li
Jiaqi Liu
Zhiwen Yu
52
8
0
18 Aug 2021
Adaptive Multi-Source Causal Inference
Thanh Vinh Vo
Pengfei Wei
T. Hoang
Tze-Yun Leong
103
1
0
31 May 2021
Federated Estimation of Causal Effects from Observational Data
Thanh Vinh Vo
T. Hoang
Young Lee
Tze-Yun Leong
FedML
CML
80
13
0
31 May 2021
Sequential Deconfounding for Causal Inference with Unobserved Confounders
Tobias Hatt
Stefan Feuerriegel
CML
97
29
0
16 Apr 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
72
16
0
20 Mar 2021
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OOD
CML
AI4CE
166
323
0
22 Feb 2021
Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models
Matej Zečević
Devendra Singh Dhami
Athresh Karanam
S. Natarajan
Kristian Kersting
CML
TPM
117
33
0
20 Feb 2021
Causal Inference for Time series Analysis: Problems, Methods and Evaluation
Raha Moraffah
Paras Sheth
Mansooreh Karami
Anchit Bhattacharya
Qianru Wang
Anique Tahir
A. Raglin
Huan Liu
CML
AI4TS
113
111
0
11 Feb 2021
Demand Forecasting of Individual Probability Density Functions with Machine Learning
Felix Wick
U. Kerzel
Martin Hahn
Moritz Wolf
Trapti Singhal
Daniel Stemmer
Jakob Ernst
M. Feindt
OOD
AI4TS
93
4
0
15 Sep 2020
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
95
27
0
27 Aug 2020
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
101
106
0
27 Feb 2020
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
131
518
0
05 Feb 2020
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
148
1
0
03 Apr 2019
Weighted Tensor Completion for Time-Series Causal Inference
Debmalya Mandal
David C. Parkes
43
2
0
12 Feb 2019
1