Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.00450
Cited By
Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders
1 February 2019
Ioana Bica
Ahmed Alaa
M. Schaar
BDL
CML
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders"
29 / 29 papers shown
Title
When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Yahya Aalaila
Gerrit Großmann
Sumantrak Mukherjee
Jonas Wahl
Sebastian Vollmer
CML
LRM
64
0
0
31 Mar 2025
G-Transformer: Counterfactual Outcome Prediction under Dynamic and Time-varying Treatment Regimes
Hong Xiong
Feng Wu
Leon Deng
Megan Su
Li-wei H. Lehman
AI4CE
33
2
0
08 Jun 2024
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
40
2
0
01 Mar 2024
Instrumental Variable Estimation for Causal Inference in Longitudinal Data with Time-Dependent Latent Confounders
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
Wentao Gao
T. Le
CML
38
6
0
12 Dec 2023
Clairvoyance: A Pipeline Toolkit for Medical Time Series
Daniel Jarrett
Jinsung Yoon
Ioana Bica
Zhaozhi Qian
A. Ercole
M. Schaar
AI4TS
29
35
0
28 Oct 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
71
2
0
16 Oct 2023
Quantifying Causes of Arctic Amplification via Deep Learning based Time-series Causal Inference
Sahara Ali
Omar Faruque
Yiyi Huang
Md. Osman Gani
Aneesh Subramanian
Nicole-Jienne Shchlegel
Jianwu Wang
CML
38
3
0
22 Feb 2023
Estimating Treatment Effects in Continuous Time with Hidden Confounders
Defu Cao
James Enouen
Yong-Jin Liu
CML
35
2
0
19 Feb 2023
Deep Causal Learning for Robotic Intelligence
Yong Li
CML
37
5
0
23 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OOD
CML
36
20
0
08 Oct 2022
Time Series Causal Link Estimation under Hidden Confounding using Knockoff Interventions
V. T. Trifunov
M. Shadaydeh
Joachim Denzler
CML
BDL
29
3
0
23 Sep 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
34
52
0
16 Jun 2022
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Changchang Yin
Ruoqi Liu
Jeffrey Caterino
Ping Zhang
OffRL
40
5
0
19 May 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
44
57
0
31 Mar 2022
Estimating average causal effects from patient trajectories
Dennis Frauen
Tobias Hatt
Valentyn Melnychuk
Stefan Feuerriegel
OOD
CML
19
25
0
02 Mar 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
52
29
0
25 Feb 2022
Causal Knowledge Guided Societal Event Forecasting
Songgaojun Deng
Huzefa Rangwala
Yue Ning
AI4TS
32
2
0
10 Dec 2021
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
50
21
0
06 Dec 2021
A Taxonomy for Inference in Causal Model Families
Matej Zevcević
Devendra Singh Dhami
Kristian Kersting
19
1
0
22 Oct 2021
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
Devendra Singh Dhami
Petar Velickovic
Kristian Kersting
AI4CE
CML
63
53
0
09 Sep 2021
DeepExpress: Heterogeneous and Coupled Sequence Modeling for Express Delivery Prediction
Siyuan Ren
Bin Guo
LongBing Cao
Ke Li
Jiaqi Liu
Zhiwen Yu
21
8
0
18 Aug 2021
Federated Estimation of Causal Effects from Observational Data
Thanh Vinh Vo
T. Hoang
Young Lee
Tze-Yun Leong
FedML
CML
23
13
0
31 May 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
19
16
0
20 Mar 2021
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
31
27
0
27 Aug 2020
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
30
105
0
27 Feb 2020
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
15
1
0
03 Apr 2019
A Bayesian Nonparametric Approach for Estimating Individualized Treatment-Response Curves
Yanbo Xu
Yanxun Xu
S. Saria
CML
59
40
0
18 Aug 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1