Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.11275
Cited By
A Theory of Regularized Markov Decision Processes
31 January 2019
M. Geist
B. Scherrer
Olivier Pietquin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Theory of Regularized Markov Decision Processes"
41 / 91 papers shown
Title
Dimension-Free Rates for Natural Policy Gradient in Multi-Agent Reinforcement Learning
Carlo Alfano
Patrick Rebeschini
50
5
0
23 Sep 2021
A Survey of Exploration Methods in Reinforcement Learning
Susan Amin
Maziar Gomrokchi
Harsh Satija
H. V. Hoof
Doina Precup
OffRL
39
80
0
01 Sep 2021
Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning
Andrea Zanette
Martin J. Wainwright
Emma Brunskill
OffRL
34
115
0
19 Aug 2021
Implicitly Regularized RL with Implicit Q-Values
Nino Vieillard
Marcin Andrychowicz
Anton Raichuk
Olivier Pietquin
M. Geist
OffRL
24
9
0
16 Aug 2021
Greedification Operators for Policy Optimization: Investigating Forward and Reverse KL Divergences
Alan Chan
Hugo Silva
Sungsu Lim
Tadashi Kozuno
A. R. Mahmood
Martha White
25
29
0
17 Jul 2021
Bellman-consistent Pessimism for Offline Reinforcement Learning
Tengyang Xie
Ching-An Cheng
Nan Jiang
Paul Mineiro
Alekh Agarwal
OffRL
LRM
29
271
0
13 Jun 2021
Offline Reinforcement Learning as Anti-Exploration
Shideh Rezaeifar
Robert Dadashi
Nino Vieillard
Léonard Hussenot
Olivier Bachem
Olivier Pietquin
M. Geist
OffRL
54
51
0
11 Jun 2021
Concave Utility Reinforcement Learning: the Mean-Field Game Viewpoint
M. Geist
Julien Pérolat
Mathieu Laurière
Romuald Elie
Sarah Perrin
Olivier Bachem
Rémi Munos
Olivier Pietquin
42
63
0
07 Jun 2021
Fast Policy Extragradient Methods for Competitive Games with Entropy Regularization
Shicong Cen
Yuting Wei
Yuejie Chi
39
77
0
31 May 2021
Finite-Sample Analysis of Off-Policy Natural Actor-Critic with Linear Function Approximation
Zaiwei Chen
S. Khodadadian
S. T. Maguluri
OffRL
68
29
0
26 May 2021
Policy Mirror Descent for Regularized Reinforcement Learning: A Generalized Framework with Linear Convergence
Wenhao Zhan
Shicong Cen
Baihe Huang
Yuxin Chen
Jason D. Lee
Yuejie Chi
32
76
0
24 May 2021
Reinforcement learning of rare diffusive dynamics
Avishek Das
Dominic C. Rose
J. P. Garrahan
David T. Limmer
24
27
0
10 May 2021
On the Linear convergence of Natural Policy Gradient Algorithm
S. Khodadadian
P. Jhunjhunwala
Sushil Mahavir Varma
S. T. Maguluri
45
56
0
04 May 2021
Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation
Andrea Zanette
Ching-An Cheng
Alekh Agarwal
37
53
0
24 Mar 2021
Near Optimal Policy Optimization via REPS
Aldo Pacchiano
Jonathan Lee
Peter L. Bartlett
Ofir Nachum
23
3
0
17 Mar 2021
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Benjamin Eysenbach
Sergey Levine
OOD
50
176
0
10 Mar 2021
Dealing with Non-Stationarity in MARL via Trust-Region Decomposition
Wenhao Li
Xiangfeng Wang
Bo Jin
Junjie Sheng
H. Zha
36
7
0
21 Feb 2021
Finite-Sample Analysis of Off-Policy Natural Actor-Critic Algorithm
S. Khodadadian
Zaiwei Chen
S. T. Maguluri
CML
OffRL
74
26
0
18 Feb 2021
Online Apprenticeship Learning
Lior Shani
Tom Zahavy
Shie Mannor
OffRL
31
25
0
13 Feb 2021
Logistic Q-Learning
Joan Bas-Serrano
Sebastian Curi
Andreas Krause
Gergely Neu
14
40
0
21 Oct 2020
Revisiting Design Choices in Proximal Policy Optimization
Chloe Ching-Yun Hsu
Celestine Mendler-Dünner
Moritz Hardt
25
53
0
23 Sep 2020
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
26
42
0
02 Aug 2020
Monte-Carlo Tree Search as Regularized Policy Optimization
Jean-Bastien Grill
Florent Altché
Yunhao Tang
Thomas Hubert
Michal Valko
Ioannis Antonoglou
Rémi Munos
29
73
0
24 Jul 2020
On Linear Convergence of Policy Gradient Methods for Finite MDPs
Jalaj Bhandari
Daniel Russo
59
59
0
21 Jul 2020
Provably Good Batch Reinforcement Learning Without Great Exploration
Yao Liu
Adith Swaminathan
Alekh Agarwal
Emma Brunskill
OffRL
27
105
0
16 Jul 2020
Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity
Kai Zhang
Sham Kakade
Tamer Bacsar
Lin F. Yang
52
120
0
15 Jul 2020
Sparse Randomized Shortest Paths Routing with Tsallis Divergence Regularization
P. Leleux
Sylvain Courtain
Guillaume Guex
M. Saerens
OT
24
5
0
01 Jul 2020
Gradient Flows for Regularized Stochastic Control Problems
David Siska
Lukasz Szpruch
31
20
0
10 Jun 2020
Mirror Descent Policy Optimization
Manan Tomar
Lior Shani
Yonathan Efroni
Mohammad Ghavamzadeh
30
83
0
20 May 2020
Scalable First-Order Methods for Robust MDPs
Julien Grand-Clément
Christian Kroer
24
28
0
11 May 2020
Leverage the Average: an Analysis of KL Regularization in RL
Nino Vieillard
Tadashi Kozuno
B. Scherrer
Olivier Pietquin
Rémi Munos
M. Geist
27
43
0
31 Mar 2020
Stable Policy Optimization via Off-Policy Divergence Regularization
Ahmed Touati
Amy Zhang
Joelle Pineau
Pascal Vincent
OffRL
36
17
0
09 Mar 2020
Adaptive Approximate Policy Iteration
Botao Hao
N. Lazić
Yasin Abbasi-Yadkori
Pooria Joulani
Csaba Szepesvári
18
14
0
08 Feb 2020
On Connections between Constrained Optimization and Reinforcement Learning
Nino Vieillard
Olivier Pietquin
M. Geist
14
13
0
18 Oct 2019
Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning?
S. Du
Sham Kakade
Ruosong Wang
Lin F. Yang
47
192
0
07 Oct 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
Jason D. Lee
G. Mahajan
13
316
0
01 Aug 2019
On the Convergence of Model Free Learning in Mean Field Games
Romuald Elie
Julien Pérolat
Mathieu Laurière
M. Geist
Olivier Pietquin
38
89
0
04 Jul 2019
Modified Actor-Critics
Erinc Merdivan
S. Hanke
M. Geist
24
2
0
02 Jul 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
41
186
0
05 Jun 2019
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
30
597
0
01 Jan 2019
VIREL: A Variational Inference Framework for Reinforcement Learning
M. Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
DRL
38
54
0
03 Nov 2018
Previous
1
2