Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.10912
Cited By
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
30 January 2019
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms"
50 / 62 papers shown
Title
A Theoretical Analysis of Compositional Generalization in Neural Networks: A Necessary and Sufficient Condition
Yuanpeng Li
CoGe
109
0
0
05 May 2025
Transfer Learning in Latent Contextual Bandits with Covariate Shift Through Causal Transportability
Mingwei Deng
Ville Kyrki
Dominik Baumann
36
0
0
27 Feb 2025
Rethinking Meta-Learning from a Learning Lens
Jingyao Wang
Wenwen Qiang
Chuxiong Sun
Lingyu Si
Jiangmeng Li
41
1
0
13 Sep 2024
Breaking Neural Network Scaling Laws with Modularity
Akhilan Boopathy
Sunshine Jiang
William Yue
Jaedong Hwang
Abhiram Iyer
Ila Fiete
OOD
34
2
0
09 Sep 2024
Memory Mosaics
Jianyu Zhang
Niklas Nolte
Ranajoy Sadhukhan
Beidi Chen
Léon Bottou
VLM
54
3
0
10 May 2024
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
Baoyu Jing
Dawei Zhou
Kan Ren
Carl Yang
CML
AI4TS
32
6
0
18 Mar 2024
Towards Controllable Time Series Generation
Yifan Bao
Yihao Ang
Qiang Huang
Anthony K. H. Tung
Zhiyong Huang
DiffM
30
4
0
06 Mar 2024
InfFeed: Influence Functions as a Feedback to Improve the Performance of Subjective Tasks
Somnath Banerjee
Maulindu Sarkar
Punyajoy Saha
Binny Mathew
Animesh Mukherjee
TDI
21
0
0
22 Feb 2024
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution Generalization
Tianrui Jia
Haoyang Li
Cheng Yang
Tao Tao
Chuan Shi
OOD
20
17
0
18 Dec 2023
Continual Invariant Risk Minimization
Francesco Alesiani
Shujian Yu
Mathias Niepert
OOD
18
1
0
21 Oct 2023
Neural Relational Inference with Fast Modular Meta-learning
Ferran Alet
Erica Weng
Tomás Lozano Pérez
L. Kaelbling
47
55
0
10 Oct 2023
CausalOps -- Towards an Industrial Lifecycle for Causal Probabilistic Graphical Models
R. Maier
A. Schlattl
Thomas Guess
J. Mottok
AI4CE
26
1
0
02 Aug 2023
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
20
6
0
02 Jul 2023
Reusable Slotwise Mechanisms
Trang Nguyen
Amin Mansouri
Kanika Madan
Khuong N. Nguyen
Kartik Ahuja
Dianbo Liu
Yoshua Bengio
OCL
22
4
0
21 Feb 2023
Deep Causal Learning for Robotic Intelligence
Y. Li
CML
19
5
0
23 Dec 2022
Trust Your
∇
\nabla
∇
: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
24
2
0
24 Nov 2022
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
22
1
0
22 Nov 2022
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
22
77
0
21 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
26
11
0
07 Nov 2022
Neural Attentive Circuits
Nasim Rahaman
M. Weiß
Francesco Locatello
C. Pal
Yoshua Bengio
Bernhard Schölkopf
Erran L. Li
Nicolas Ballas
19
6
0
14 Oct 2022
On a Built-in Conflict between Deep Learning and Systematic Generalization
Yuanpeng Li
OOD
21
0
0
24 Aug 2022
Meta-Causal Feature Learning for Out-of-Distribution Generalization
Yuqing Wang
Xiangxian Li
Zhuang Qi
Jingyu Li
Xuelong Li
Xiangxu Meng
Lei Meng
OOD
OODD
BDL
25
25
0
22 Aug 2022
Towards Intercultural Affect Recognition: Audio-Visual Affect Recognition in the Wild Across Six Cultures
Leena Mathur
R. Adolphs
Maja J. Matarić
CVBM
17
1
0
31 Jul 2022
Equivariant Representation Learning via Class-Pose Decomposition
G. Marchetti
Gustaf Tegnér
Anastasiia Varava
Danica Kragic
DRL
22
14
0
07 Jul 2022
Towards Understanding How Machines Can Learn Causal Overhypotheses
Eliza Kosoy
David M. Chan
Adrian Liu
Jasmine Collins
Bryanna Kaufmann
Sandy Han Huang
Jessica B. Hamrick
John F. Canny
Nan Rosemary Ke
Alison Gopnik
CML
AI4CE
21
18
0
16 Jun 2022
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
23
8
0
09 Jun 2022
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
30
48
0
04 Jun 2022
Do learned representations respect causal relationships?
Lan Wang
Vishnu Naresh Boddeti
NAI
CML
OOD
18
6
0
02 Apr 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
31
48
0
03 Mar 2022
Correcting Confounding via Random Selection of Background Variables
You-Lin Chen
Lenon Minorics
Dominik Janzing
CML
16
4
0
04 Feb 2022
Debiased Graph Neural Networks with Agnostic Label Selection Bias
Shaohua Fan
Xiao Wang
Chuan Shi
Kun Kuang
Nian Liu
Bai Wang
AI4CE
29
38
0
19 Jan 2022
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs
Shaohua Fan
Xiao Wang
Chuan Shi
Peng Cui
Bai Wang
CML
OOD
OODD
AI4CE
37
81
0
20 Nov 2021
Dynamic Inference with Neural Interpreters
Nasim Rahaman
Muhammad Waleed Gondal
S. Joshi
Peter V. Gehler
Yoshua Bengio
Francesco Locatello
Bernhard Schölkopf
21
31
0
12 Oct 2021
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
33
42
0
06 Sep 2021
Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning
Nan Rosemary Ke
Aniket Didolkar
Sarthak Mittal
Anirudh Goyal
Guillaume Lajoie
Stefan Bauer
Danilo Jimenez Rezende
Yoshua Bengio
Michael C. Mozer
C. Pal
CML
19
54
0
02 Jul 2021
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDL
CML
13
48
0
14 Jun 2021
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
18
95
0
05 Jun 2021
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDL
UQCV
OOD
16
39
0
09 May 2021
Towards a Collective Agenda on AI for Earth Science Data Analysis
D. Tuia
R. Roscher
Jan Dirk Wegner
Nathan Jacobs
Xiaoxiang Zhu
Gustau Camps-Valls
AI4CE
37
68
0
11 Apr 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
31
108
0
08 Mar 2021
Causal Attention for Vision-Language Tasks
Xu Yang
Hanwang Zhang
Guojun Qi
Jianfei Cai
CML
23
148
0
05 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
32
296
0
03 Mar 2021
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OOD
AI4CE
32
980
0
03 Mar 2021
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
28
123
0
15 Jan 2021
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
19
104
0
03 Nov 2020
S2RMs: Spatially Structured Recurrent Modules
Nasim Rahaman
Anirudh Goyal
Muhammad Waleed Gondal
M. Wuthrich
Stefan Bauer
Yash Sharma
Yoshua Bengio
Bernhard Schölkopf
16
14
0
13 Jul 2020
A causal view of compositional zero-shot recognition
Y. Atzmon
Felix Kreuk
Uri Shalit
Gal Chechik
OCL
BDL
CML
45
117
0
25 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
22
229
0
11 Jun 2020
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
11
21
0
26 Feb 2020
The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence
G. Marcus
VLM
24
352
0
14 Feb 2020
1
2
Next