ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09401
  4. Cited By
SGD: General Analysis and Improved Rates

SGD: General Analysis and Improved Rates

27 January 2019
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
ArXivPDFHTML

Papers citing "SGD: General Analysis and Improved Rates"

32 / 82 papers shown
Title
Towards Biologically Plausible Convolutional Networks
Towards Biologically Plausible Convolutional Networks
Roman Pogodin
Yash Mehta
Timothy Lillicrap
P. Latham
26
22
0
22 Jun 2021
Stochastic Polyak Stepsize with a Moving Target
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
29
17
0
22 Jun 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
FedNL: Making Newton-Type Methods Applicable to Federated Learning
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
33
77
0
05 Jun 2021
Spatio-Temporal Neural Network for Fitting and Forecasting COVID-19
Spatio-Temporal Neural Network for Fitting and Forecasting COVID-19
Yi-Shuai Niu
Wentao Ding
Junpeng Hu
Wenxu Xu
S. Canu
19
2
0
22 Mar 2021
Moshpit SGD: Communication-Efficient Decentralized Training on
  Heterogeneous Unreliable Devices
Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices
Max Ryabinin
Eduard A. Gorbunov
Vsevolod Plokhotnyuk
Gennady Pekhimenko
35
32
0
04 Mar 2021
Variance Reduced Training with Stratified Sampling for Forecasting
  Models
Variance Reduced Training with Stratified Sampling for Forecasting Models
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
AI4TS
38
17
0
02 Mar 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
75
14
0
16 Feb 2021
Local SGD: Unified Theory and New Efficient Methods
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
35
109
0
03 Nov 2020
Optimal Client Sampling for Federated Learning
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
42
191
0
26 Oct 2020
AEGD: Adaptive Gradient Descent with Energy
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
27
11
0
10 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
DBS: Dynamic Batch Size For Distributed Deep Neural Network Training
DBS: Dynamic Batch Size For Distributed Deep Neural Network Training
Qing Ye
Yuhao Zhou
Mingjia Shi
Yanan Sun
Jiancheng Lv
22
11
0
23 Jul 2020
On stochastic mirror descent with interacting particles: convergence
  properties and variance reduction
On stochastic mirror descent with interacting particles: convergence properties and variance reduction
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
28
12
0
15 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp
  Guarantees
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
42
273
0
02 Jul 2020
DeltaGrad: Rapid retraining of machine learning models
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
25
196
0
26 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
  Interpolation
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
Random Reshuffling: Simple Analysis with Vast Improvements
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
37
131
0
10 Jun 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
41
493
0
23 Mar 2020
On the Convergence of Nesterov's Accelerated Gradient Method in
  Stochastic Settings
On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings
Mahmoud Assran
Michael G. Rabbat
14
59
0
27 Feb 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast
  Convergence
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
27
181
0
24 Feb 2020
Gradient tracking and variance reduction for decentralized optimization
  and machine learning
Gradient tracking and variance reduction for decentralized optimization and machine learning
Ran Xin
S. Kar
U. Khan
19
10
0
13 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a
  Surprising Application to Finite-Sum Problems
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
35
17
0
11 Feb 2020
Better Theory for SGD in the Nonconvex World
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
178
0
09 Feb 2020
The Practicality of Stochastic Optimization in Imaging Inverse Problems
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
27
30
0
22 Oct 2019
The Error-Feedback Framework: Better Rates for SGD with Delayed
  Gradients and Compressed Communication
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
Sebastian U. Stich
Sai Praneeth Karimireddy
FedML
22
20
0
11 Sep 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
26
112
0
09 Jul 2019
Beyond Alternating Updates for Matrix Factorization with Inertial
  Bregman Proximal Gradient Algorithms
Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms
Mahesh Chandra Mukkamala
Peter Ochs
19
21
0
22 May 2019
Characterization of Convex Objective Functions and Optimal Expected
  Convergence Rates for SGD
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD
Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung Phan
36
6
0
09 Oct 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,201
0
16 Aug 2016
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
571
0
08 Dec 2012
Previous
12