Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09401
Cited By
SGD: General Analysis and Improved Rates
27 January 2019
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SGD: General Analysis and Improved Rates"
50 / 80 papers shown
Title
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Dmitry Kovalev
57
0
0
16 Mar 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
36
0
0
28 Jan 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
93
3
0
28 Jan 2025
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
An Inexact Halpern Iteration with Application to Distributionally Robust Optimization
Ling Liang
Kim-Chuan Toh
Jia Jie Zhu
32
4
0
08 Feb 2024
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
P. Ostroukhov
Aigerim Zhumabayeva
Chulu Xiang
Alexander Gasnikov
Martin Takáč
Dmitry Kamzolov
ODL
46
2
0
07 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Central Limit Theorem for Two-Timescale Stochastic Approximation with Markovian Noise: Theory and Applications
Jie Hu
Vishwaraj Doshi
Do Young Eun
38
4
0
17 Jan 2024
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
Antoine Godichon-Baggioni
Nicklas Werge
ODL
37
3
0
29 Nov 2023
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
26
0
0
19 Oct 2023
PRIOR: Personalized Prior for Reactivating the Information Overlooked in Federated Learning
Mingjia Shi
Yuhao Zhou
Kai Wang
Huaizheng Zhang
Shudong Huang
Qing Ye
Jiangcheng Lv
29
9
0
13 Oct 2023
When MiniBatch SGD Meets SplitFed Learning:Convergence Analysis and Performance Evaluation
Chao Huang
Geng Tian
Ming Tang
FedML
34
4
0
23 Aug 2023
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Non asymptotic analysis of Adaptive stochastic gradient algorithms and applications
Antoine Godichon-Baggioni
Pierre Tarrago
24
5
0
01 Mar 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
27
13
0
27 Feb 2023
Statistical Inference with Stochastic Gradient Methods under
φ
φ
φ
-mixing Data
Ruiqi Liu
Xinyu Chen
Zuofeng Shang
FedML
19
6
0
24 Feb 2023
Federated Gradient Matching Pursuit
Halyun Jeong
Deanna Needell
Jing Qin
FedML
37
1
0
20 Feb 2023
Cyclic and Randomized Stepsizes Invoke Heavier Tails in SGD than Constant Stepsize
Mert Gurbuzbalaban
Yuanhan Hu
Umut Simsekli
Lingjiong Zhu
LRM
23
1
0
10 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
40
6
0
30 Jan 2023
Convergence of First-Order Algorithms for Meta-Learning with Moreau Envelopes
Konstantin Mishchenko
Slavomír Hanzely
Peter Richtárik
FedML
32
5
0
17 Jan 2023
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
A. Maranjyan
M. Safaryan
Peter Richtárik
34
13
0
28 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Efficiency Ordering of Stochastic Gradient Descent
Jie Hu
Vishwaraj Doshi
Do Young Eun
31
6
0
15 Sep 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
42
31
0
29 Aug 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
24
10
0
24 Aug 2022
Empirical Study of Overfitting in Deep FNN Prediction Models for Breast Cancer Metastasis
Chuhan Xu
Pablo Coen-Pirani
Xia Jiang
AI4CE
21
1
0
03 Aug 2022
Layer-Wise Partitioning and Merging for Efficient and Scalable Deep Learning
S. Akintoye
Liangxiu Han
H. Lloyd
Xin Zhang
Darren Dancey
Haoming Chen
Daoqiang Zhang
FedML
34
5
0
22 Jul 2022
Towards Understanding Sharpness-Aware Minimization
Maksym Andriushchenko
Nicolas Flammarion
AAML
35
134
0
13 Jun 2022
FedControl: When Control Theory Meets Federated Learning
Adnane Mansour
Gaia Carenini
Alexandre Duplessis
D. Naccache
FedML
21
2
0
27 May 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
32
75
0
27 May 2022
Learning from time-dependent streaming data with online stochastic algorithms
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
22
3
0
25 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
27
10
0
08 May 2022
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
Konstantinos E. Nikolakakis
Farzin Haddadpour
Amin Karbasi
Dionysios S. Kalogerias
43
17
0
26 Apr 2022
Deep Unlearning via Randomized Conditionally Independent Hessians
Ronak R. Mehta
Sourav Pal
Vikas Singh
Sathya Ravi
MU
27
81
0
15 Apr 2022
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
Cheng Wan
Youjie Li
Ang Li
Namjae Kim
Yingyan Lin
GNN
34
75
0
21 Mar 2022
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!
Konstantin Mishchenko
Grigory Malinovsky
Sebastian U. Stich
Peter Richtárik
11
151
0
18 Feb 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
19
48
0
15 Feb 2022
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
22
30
0
25 Dec 2021
Differentially Private Federated Learning on Heterogeneous Data
Maxence Noble
A. Bellet
Aymeric Dieuleveut
FedML
13
102
0
17 Nov 2021
Stochastic Extragradient: General Analysis and Improved Rates
Eduard A. Gorbunov
Hugo Berard
Gauthier Gidel
Nicolas Loizou
22
40
0
16 Nov 2021
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
24
8
0
11 Nov 2021
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan DÓrazio
Nicolas Loizou
I. Laradji
Ioannis Mitliagkas
34
30
0
28 Oct 2021
Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent
Sharan Vaswani
Benjamin Dubois-Taine
Reza Babanezhad
51
11
0
21 Oct 2021
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
24
4
0
19 Oct 2021
Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Streaming Data
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
19
7
0
15 Sep 2021
Online Continual Learning with Natural Distribution Shifts: An Empirical Study with Visual Data
Zhipeng Cai
Ozan Sener
V. Koltun
CLL
33
83
0
20 Aug 2021
Decentralized Composite Optimization with Compression
Yao Li
Xiaorui Liu
Jiliang Tang
Ming Yan
Kun Yuan
27
9
0
10 Aug 2021
Towards Biologically Plausible Convolutional Networks
Roman Pogodin
Yash Mehta
Timothy Lillicrap
P. Latham
26
22
0
22 Jun 2021
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
29
17
0
22 Jun 2021
1
2
Next