Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08572
Cited By
Width Provably Matters in Optimization for Deep Linear Neural Networks
24 January 2019
S. Du
Wei Hu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Width Provably Matters in Optimization for Deep Linear Neural Networks"
24 / 24 papers shown
Title
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
38
3
0
22 Sep 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
37
12
0
06 Jun 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
YunLong Yu
CLL
39
3
0
19 Mar 2024
On a continuous time model of gradient descent dynamics and instability in deep learning
Mihaela Rosca
Yan Wu
Chongli Qin
Benoit Dherin
18
6
0
03 Feb 2023
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
23
8
0
19 Sep 2022
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks
Andrew M. Saxe
Shagun Sodhani
Sam Lewallen
AI4CE
30
34
0
21 Jul 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
44
5
0
15 Jul 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
36
13
0
22 Apr 2022
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
Chandrashekar Lakshminarayanan
Ashutosh Kumar Singh
A. Rajkumar
AI4CE
26
1
0
01 Mar 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
35
7
0
11 Oct 2021
Towards Demystifying Representation Learning with Non-contrastive Self-supervision
Xiang Wang
Xinlei Chen
S. Du
Yuandong Tian
SSL
21
26
0
11 Oct 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Initialization and Regularization of Factorized Neural Layers
M. Khodak
Neil A. Tenenholtz
Lester W. Mackey
Nicolò Fusi
65
56
0
03 May 2021
Understanding self-supervised Learning Dynamics without Contrastive Pairs
Yuandong Tian
Xinlei Chen
Surya Ganguli
SSL
138
281
0
12 Feb 2021
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
21
20
0
31 Jan 2021
Deep matrix factorizations
Pierre De Handschutter
Nicolas Gillis
Xavier Siebert
BDL
28
40
0
01 Oct 2020
Analysis of Knowledge Transfer in Kernel Regime
Arman Rahbar
Ashkan Panahi
Chiranjib Bhattacharyya
Devdatt Dubhashi
M. Chehreghani
21
3
0
30 Mar 2020
Global Convergence of Gradient Descent for Deep Linear Residual Networks
Lei Wu
Qingcan Wang
Chao Ma
ODL
AI4CE
28
22
0
02 Nov 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
29
491
0
31 May 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
42
901
0
26 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
32
22
0
10 Apr 2019
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
Kenji Kawaguchi
Jiaoyang Huang
L. Kaelbling
AAML
21
18
0
07 Apr 2019
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
128
117
0
08 Jul 2017
1