ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08096
  4. Cited By
Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps
  for Time Series Prediction

Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps for Time Series Prediction

23 January 2019
Bryan Lim
S. Zohren
Stephen J. Roberts
    BDL
    AI4TS
ArXivPDFHTML

Papers citing "Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps for Time Series Prediction"

28 / 28 papers shown
Title
Lagging Inference Networks and Posterior Collapse in Variational
  Autoencoders
Lagging Inference Networks and Posterior Collapse in Variational Autoencoders
Junxian He
Daniel M. Spokoyny
Graham Neubig
Taylor Berg-Kirkpatrick
BDL
DRL
56
273
0
16 Jan 2019
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Zihang Dai
Zhilin Yang
Yiming Yang
J. Carbonell
Quoc V. Le
Ruslan Salakhutdinov
VLM
140
3,714
0
09 Jan 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
99
1,451
0
29 Nov 2018
Variational Autoencoder with Implicit Optimal Priors
Variational Autoencoder with Implicit Optimal Priors
Hiroshi Takahashi
Tomoharu Iwata
Yuki Yamanaka
Masanori Yamada
Satoshi Yagi
DRL
51
62
0
14 Sep 2018
MOrdReD: Memory-based Ordinal Regression Deep Neural Networks for Time
  Series Forecasting
MOrdReD: Memory-based Ordinal Regression Deep Neural Networks for Time Series Forecasting
Bernardo Pérez Orozco
G. Abbati
Stephen J. Roberts
OOD
AI4TS
28
14
0
26 Mar 2018
Disentangling the independently controllable factors of variation by
  interacting with the world
Disentangling the independently controllable factors of variation by interacting with the world
Valentin Thomas
Emmanuel Bengio
W. Fedus
Jules Pondard
Philippe Beaudoin
Hugo Larochelle
Joelle Pineau
Doina Precup
Yoshua Bengio
DRL
CoGe
CML
37
61
0
26 Feb 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
44
1,336
0
16 Feb 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
19
32
0
13 Feb 2018
Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
48
121
0
31 Jan 2018
Learning Independent Causal Mechanisms
Learning Independent Causal Mechanisms
Giambattista Parascandolo
Niki Kilbertus
Mateo Rojas-Carulla
Bernhard Schölkopf
CML
OOD
DRL
42
181
0
04 Dec 2017
A Multi-Horizon Quantile Recurrent Forecaster
A Multi-Horizon Quantile Recurrent Forecaster
Ruofeng Wen
Kari Torkkola
Balakrishnan Narayanaswamy
Dhruv Madeka
BDL
AI4TS
47
426
0
29 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
161
4,928
0
02 Nov 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
48
283
0
16 Oct 2017
Predictive-State Decoders: Encoding the Future into Recurrent Networks
Predictive-State Decoders: Encoding the Future into Recurrent Networks
Arun Venkatraman
Nicholas Rhinehart
Wen Sun
Lerrel Pinto
M. Hebert
Byron Boots
Kris Kitani
J. Andrew Bagnell
AI4CE
60
42
0
25 Sep 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
453
129,831
0
12 Jun 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
110
359
0
01 Jun 2017
Predictive State Recurrent Neural Networks
Predictive State Recurrent Neural Networks
Carlton Downey
Ahmed S. Hefny
Boyue Li
Byron Boots
Geoffrey J. Gordon
AI4TS
44
57
0
25 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GAN
BDL
55
628
0
19 May 2017
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
David Salinas
Valentin Flunkert
Jan Gasthaus
AI4TS
UQCV
BDL
71
2,080
0
13 Apr 2017
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
75
454
0
30 Sep 2016
WaveNet: A Generative Model for Raw Audio
WaveNet: A Generative Model for Raw Audio
Aaron van den Oord
Sander Dieleman
Heiga Zen
Karen Simonyan
Oriol Vinyals
Alex Graves
Nal Kalchbrenner
A. Senior
Koray Kavukcuoglu
DiffM
303
7,361
0
12 Sep 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space
  Models from Raw Data
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
38
373
0
20 May 2016
Composing graphical models with neural networks for structured
  representations and fast inference
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDL
OCL
67
483
0
20 Mar 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
211
5,502
0
23 Nov 2015
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
77
2,352
0
19 Nov 2015
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
56
372
0
16 Nov 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
70
1,250
0
07 Jun 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
367
16,962
0
20 Dec 2013
1