Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.06020
Cited By
GO Gradient for Expectation-Based Objectives
17 January 2019
Yulai Cong
Miaoyun Zhao
Ke Bai
Lawrence Carin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"GO Gradient for Expectation-Based Objectives"
33 / 33 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
473
10,591
0
17 Feb 2020
ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks
Mingzhang Yin
Mingyuan Zhou
MQ
118
11
0
30 Jul 2018
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
145
113
0
05 Jun 2018
Implicit Reparameterization Gradients
Michael Figurnov
S. Mohamed
A. Mnih
BDL
105
234
0
22 May 2018
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
Hao Zhang
Bo Chen
D. Guo
Mingyuan Zhou
BDL
73
118
0
04 Mar 2018
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
99
300
0
31 Oct 2017
Triangle Generative Adversarial Networks
Zhe Gan
Liqun Chen
Weiyao Wang
Yunchen Pu
Yizhe Zhang
Hao Liu
Chunyuan Li
Lawrence Carin
GAN
OOD
59
137
0
19 Sep 2017
ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching
Chunyuan Li
Hao Liu
Changyou Chen
Yunchen Pu
Liqun Chen
Ricardo Henao
Lawrence Carin
GAN
FedML
65
223
0
05 Sep 2017
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC
Yulai Cong
Bo Chen
Hongwei Liu
Mingyuan Zhou
BDL
61
66
0
06 Jun 2017
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
BDL
118
202
0
27 Mar 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
230
282
0
21 Mar 2017
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
172
4,827
0
26 Jan 2017
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
344
5,372
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
196
2,538
0
02 Nov 2016
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
59
116
0
27 Oct 2016
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
135
107
0
18 Oct 2016
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
83
169
0
07 Oct 2016
Energy-based Generative Adversarial Network
Jiaqi Zhao
Michaël Mathieu
Yann LeCun
GAN
139
1,114
0
11 Sep 2016
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
486
9,062
0
10 Jun 2016
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
161
291
0
22 Feb 2016
Rényi Divergence Variational Inference
Yingzhen Li
Richard Turner
BDL
97
263
0
06 Feb 2016
Gamma Belief Networks
Mingyuan Zhou
Yulai Cong
Bo Chen
BDL
81
87
0
09 Dec 2015
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
269
14,018
0
19 Nov 2015
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
BDL
51
143
0
16 Nov 2015
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
88
338
0
07 Nov 2015
The Poisson Gamma Belief Network
Mingyuan Zhou
Yulai Cong
Bo Chen
BDL
47
53
0
06 Nov 2015
Fast Second-Order Stochastic Backpropagation for Variational Inference
Kai Fan
Ziteng Wang
J. Beck
James T. Kwok
Katherine A. Heller
ODL
BDL
DRL
57
46
0
09 Sep 2015
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
146
395
0
17 Jun 2015
Local Expectation Gradients for Doubly Stochastic Variational Inference
Michalis K. Titsias
BDL
43
9
0
04 Mar 2015
Deep Exponential Families
Rajesh Ranganath
Linpeng Tang
Laurent Charlin
David M. Blei
BDL
45
153
0
10 Nov 2014
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
186
729
0
31 Jan 2014
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
150
1,168
0
31 Dec 2013
Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression
Tim Salimans
David A. Knowles
118
251
0
28 Jun 2012
1