ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.02070
  4. Cited By
Convolutional Neural Networks on non-uniform geometrical signals using
  Euclidean spectral transformation

Convolutional Neural Networks on non-uniform geometrical signals using Euclidean spectral transformation

7 January 2019
C. Jiang
Dequan Wang
Jingwei Huang
P. Marcus
Matthias Nießner
    3DPC
ArXivPDFHTML

Papers citing "Convolutional Neural Networks on non-uniform geometrical signals using Euclidean spectral transformation"

7 / 7 papers shown
Title
Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications
Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications
Maria Despoina Siampou
Jialiang Li
John Krumm
Cyrus Shahabi
Hua Lu
27
1
0
27 Aug 2024
Towards General-Purpose Representation Learning of Polygonal Geometries
Towards General-Purpose Representation Learning of Polygonal Geometries
Gengchen Mai
C. Jiang
Weiwei Sun
Rui Zhu
Yao Xuan
Ling Cai
K. Janowicz
Stefano Ermon
Ni Lao
35
38
0
29 Sep 2022
Local Implicit Grid Representations for 3D Scenes
Local Implicit Grid Representations for 3D Scenes
C. Jiang
Avneesh Sud
A. Makadia
Jingwei Huang
Matthias Nießner
Thomas Funkhouser
3DPC
240
558
0
19 Mar 2020
DDSL: Deep Differentiable Simplex Layer for Learning Geometric Signals
DDSL: Deep Differentiable Simplex Layer for Learning Geometric Signals
C. Jiang
Dana Lynn Ona Lansigan
P. Marcus
Matthias Nießner
11
11
0
30 Jan 2019
6-DoF Object Pose from Semantic Keypoints
6-DoF Object Pose from Semantic Keypoints
Georgios Pavlakos
Xiaowei Zhou
Aaron Chan
Konstantinos G. Derpanis
Kostas Daniilidis
105
392
0
14 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
263
1,812
0
25 Nov 2016
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
191
1,942
0
24 Oct 2016
1