ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.01965
  4. Cited By
Efficient Winograd Convolution via Integer Arithmetic

Efficient Winograd Convolution via Integer Arithmetic

7 January 2019
Lingchuan Meng
J. Brothers
ArXiv (abs)PDFHTML

Papers citing "Efficient Winograd Convolution via Integer Arithmetic"

10 / 10 papers shown
Title
YFlows: Systematic Dataflow Exploration and Code Generation for
  Efficient Neural Network Inference using SIMD Architectures on CPUs
YFlows: Systematic Dataflow Exploration and Code Generation for Efficient Neural Network Inference using SIMD Architectures on CPUs
Cyrus Zhou
Zack Hassman
Ruize Xu
Dhirpal Shah
Vaughn Richard
Yanjing Li
97
2
0
01 Oct 2023
Low-Rank Winograd Transformation for 3D Convolutional Neural Networks
Low-Rank Winograd Transformation for 3D Convolutional Neural Networks
Ziran Qin
Mingbao Lin
Weiyao Lin
3DPC
77
3
0
26 Jan 2023
Going Further With Winograd Convolutions: Tap-Wise Quantization for
  Efficient Inference on 4x4 Tile
Going Further With Winograd Convolutions: Tap-Wise Quantization for Efficient Inference on 4x4 Tile
Renzo Andri
Beatrice Bussolino
A. Cipolletta
Lukas Cavigelli
Zhe Wang
MQ
60
14
0
26 Sep 2022
Communication Bounds for Convolutional Neural Networks
Communication Bounds for Convolutional Neural Networks
An Chen
J. Demmel
Grace Dinh
Mason Haberle
Olga Holtz
51
4
0
18 Apr 2022
Fast Convolution based on Winograd Minimum Filtering: Introduction and
  Development
Fast Convolution based on Winograd Minimum Filtering: Introduction and Development
Gan Tong
Libo Huang
32
2
0
01 Nov 2021
Efficient Residue Number System Based Winograd Convolution
Efficient Residue Number System Based Winograd Convolution
Zhi-Gang Liu
Matthew Mattina
78
12
0
23 Jul 2020
Quantaized Winograd/Toom-Cook Convolution for DNNs: Beyond Canonical
  Polynomials Base
Quantaized Winograd/Toom-Cook Convolution for DNNs: Beyond Canonical Polynomials Base
B. Barabasz
MQ
39
5
0
23 Apr 2020
Searching for Winograd-aware Quantized Networks
Searching for Winograd-aware Quantized Networks
Javier Fernandez-Marques
P. Whatmough
Andrew Mundy
Matthew Mattina
MQ
76
40
0
25 Feb 2020
DWM: A Decomposable Winograd Method for Convolution Acceleration
DWM: A Decomposable Winograd Method for Convolution Acceleration
Di Huang
Xishan Zhang
Rui Zhang
Tian Zhi
Deyuan He
...
Qi Guo
Zidong Du
Shaoli Liu
Tianshi Chen
Yunji Chen
40
26
0
03 Feb 2020
Winograd Convolution for DNNs: Beyond linear polynomials
Winograd Convolution for DNNs: Beyond linear polynomials
B. Barabasz
David Gregg
30
14
0
13 May 2019
1