Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.00403
Cited By
Can You Trust This Prediction? Auditing Pointwise Reliability After Learning
2 January 2019
Peter F. Schulam
S. Saria
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can You Trust This Prediction? Auditing Pointwise Reliability After Learning"
22 / 22 papers shown
Title
Deeper Understanding of Black-box Predictions via Generalized Influence Functions
Hyeonsu Lyu
Jonggyu Jang
Sehyun Ryu
H. Yang
TDI
AI4CE
20
5
0
09 Dec 2023
Metrics reloaded: Recommendations for image analysis validation
Lena Maier-Hein
Annika Reinke
Patrick Godau
M. Tizabi
Florian Buettner
...
Aleksei Tiulpin
Sotirios A. Tsaftaris
Ben Van Calster
Gaël Varoquaux
Paul F. Jäger
34
217
0
03 Jun 2022
A Cheap Bootstrap Method for Fast Inference
H. Lam
29
11
0
31 Jan 2022
Algorithmic encoding of protected characteristics in image-based models for disease detection
Ben Glocker
Charles Jones
Mélanie Bernhardt
S. Winzeck
29
9
0
27 Oct 2021
Detecting and Mitigating Test-time Failure Risks via Model-agnostic Uncertainty Learning
Preethi Lahoti
Krishna P. Gummadi
Gerhard Weikum
34
3
0
09 Sep 2021
On the Importance of Regularisation & Auxiliary Information in OOD Detection
John Mitros
Brian Mac Namee
21
2
0
15 Jul 2021
Test for non-negligible adverse shifts
Vathy M. Kamulete
15
3
0
07 Jul 2021
Quality Assurance Challenges for Machine Learning Software Applications During Software Development Life Cycle Phases
Md. Abdullah Al Alamin
Gias Uddin
32
11
0
03 May 2021
Influence Based Defense Against Data Poisoning Attacks in Online Learning
Sanjay Seetharaman
Shubham Malaviya
KV Rosni
Manish Shukla
S. Lodha
TDI
AAML
39
9
0
24 Apr 2021
CheXbreak: Misclassification Identification for Deep Learning Models Interpreting Chest X-rays
E. Chen
Andy Kim
R. Krishnan
J. Long
A. Ng
Pranav Rajpurkar
26
2
0
18 Mar 2021
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo
Nazneen Rajani
Peter Hase
Joey Tianyi Zhou
Caiming Xiong
TDI
41
102
0
31 Dec 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
26
2
0
03 Sep 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
28
16
0
17 Aug 2020
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
Ahmed Alaa
M. Schaar
UD
UQCV
BDL
TDI
16
53
0
29 Jun 2020
Influence Functions in Deep Learning Are Fragile
S. Basu
Phillip E. Pope
S. Feizi
TDI
37
219
0
25 Jun 2020
Calibrating Deep Neural Network Classifiers on Out-of-Distribution Datasets
Zhihui Shao
Jianyi Yang
Shaolei Ren
OODD
35
11
0
16 Jun 2020
SafeML: Safety Monitoring of Machine Learning Classifiers through Statistical Difference Measure
Koorosh Aslansefat
Ioannis Sorokos
D. Whiting
Ramin Tavakoli Kolagari
Y. Papadopoulos
28
34
0
27 May 2020
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
The Audio Auditor: User-Level Membership Inference in Internet of Things Voice Services
Yuantian Miao
Minhui Xue
Chao Chen
Lei Pan
Jinchao Zhang
Benjamin Zi Hao Zhao
Dali Kaafar
Yang Xiang
11
34
0
17 May 2019
Tutorial: Safe and Reliable Machine Learning
S. Saria
Adarsh Subbaswamy
FaML
30
82
0
15 Apr 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1