ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.10576
  4. Cited By
Deconfounding Reinforcement Learning in Observational Settings

Deconfounding Reinforcement Learning in Observational Settings

26 December 2018
Chaochao Lu
Bernhard Schölkopf
José Miguel Hernández-Lobato
    CML
    OOD
ArXivPDFHTML

Papers citing "Deconfounding Reinforcement Learning in Observational Settings"

46 / 46 papers shown
Title
Parameter Estimation using Reinforcement Learning Causal Curiosity: Limits and Challenges
Parameter Estimation using Reinforcement Learning Causal Curiosity: Limits and Challenges
Miguel Arana-Catania
Weisi Guo
CML
32
0
0
13 May 2025
CAIMAN: Causal Action Influence Detection for Sample-efficient Loco-manipulation
CAIMAN: Causal Action Influence Detection for Sample-efficient Loco-manipulation
Yuanchen Yuan
Jin Cheng
Núria Armengol Urpí
Stelian Coros
74
1
0
02 Feb 2025
Two-way Deconfounder for Off-policy Evaluation in Causal Reinforcement
  Learning
Two-way Deconfounder for Off-policy Evaluation in Causal Reinforcement Learning
Shuguang Yu
Shuxing Fang
Ruixin Peng
Zhengling Qi
Fan Zhou
C. Shi
CML
OffRL
82
1
0
08 Dec 2024
Interpreting Low-level Vision Models with Causal Effect Maps
Interpreting Low-level Vision Models with Causal Effect Maps
Jinfan Hu
Jinjin Gu
Shiyao Yu
Fanghua Yu
Zheyuan Li
Zhiyuan You
Chaochao Lu
Chao Dong
CML
50
2
0
29 Jul 2024
Fine-Grained Causal Dynamics Learning with Quantization for Improving
  Robustness in Reinforcement Learning
Fine-Grained Causal Dynamics Learning with Quantization for Improving Robustness in Reinforcement Learning
Inwoo Hwang
Yunhyeok Kwak
Suhyung Choi
Byoung-Tak Zhang
Sanghack Lee
45
1
0
05 Jun 2024
Causal Action Influence Aware Counterfactual Data Augmentation
Causal Action Influence Aware Counterfactual Data Augmentation
Núria Armengol Urpí
Marco Bagatella
Marin Vlastelica
Georg Martius
CML
35
5
0
29 May 2024
Learning Causal Dynamics Models in Object-Oriented Environments
Learning Causal Dynamics Models in Object-Oriented Environments
Zhongwei Yu
Jingqing Ruan
Dengpeng Xing
46
1
0
21 May 2024
Why Online Reinforcement Learning is Causal
Why Online Reinforcement Learning is Causal
Oliver Schulte
Pascal Poupart
CML
OffRL
51
1
0
07 Mar 2024
The Essential Role of Causality in Foundation World Models for Embodied
  AI
The Essential Role of Causality in Foundation World Models for Embodied AI
Tarun Gupta
Wenbo Gong
Chao Ma
Nick Pawlowski
Agrin Hilmkil
...
Jianfeng Gao
Stefan Bauer
Danica Kragic
Bernhard Schölkopf
Cheng Zhang
36
15
0
06 Feb 2024
Causal Reinforcement Learning: A Survey
Causal Reinforcement Learning: A Survey
Zhi-Hong Deng
Jing Jiang
Guodong Long
Chen Zhang
CML
LRM
50
13
0
04 Jul 2023
Functional Causal Bayesian Optimization
Functional Causal Bayesian Optimization
Limor Gultchin
Virginia Aglietti
Alexis Bellot
Silvia Chiappa
CML
29
4
0
10 Jun 2023
Bad Habits: Policy Confounding and Out-of-Trajectory Generalization in
  RL
Bad Habits: Policy Confounding and Out-of-Trajectory Generalization in RL
Miguel Suau
M. Spaan
F. Oliehoek
CML
27
4
0
04 Jun 2023
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden
  Confounding
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
Guy Tennenholtz
OffRL
23
6
0
01 Jun 2023
Explainable Reinforcement Learning via a Causal World Model
Explainable Reinforcement Learning via a Causal World Model
Zhongwei Yu
Jingqing Ruan
Dengpeng Xing
CML
35
15
0
04 May 2023
A Survey on Causal Reinforcement Learning
A Survey on Causal Reinforcement Learning
Yan Zeng
Ruichu Cai
Gang Hua
Libo Huang
Zhifeng Hao
CML
31
27
0
10 Feb 2023
Causal Temporal Reasoning for Markov Decision Processes
Causal Temporal Reasoning for Markov Decision Processes
M. Kazemi
Nicola Paoletti
LRM
AI4CE
19
1
0
16 Dec 2022
Causal Deep Reinforcement Learning Using Observational Data
Causal Deep Reinforcement Learning Using Observational Data
Wenxuan Zhu
Chao Yu
Qiaosheng Zhang
CML
OffRL
26
5
0
28 Nov 2022
Statistical Estimation of Confounded Linear MDPs: An Instrumental
  Variable Approach
Statistical Estimation of Confounded Linear MDPs: An Instrumental Variable Approach
Miao Lu
Wenhao Yang
Liangyu Zhang
Zhihua Zhang
OffRL
40
1
0
12 Sep 2022
A Relational Intervention Approach for Unsupervised Dynamics
  Generalization in Model-Based Reinforcement Learning
A Relational Intervention Approach for Unsupervised Dynamics Generalization in Model-Based Reinforcement Learning
J. Guo
Biwei Huang
Dacheng Tao
15
20
0
09 Jun 2022
Dynamic Causal Bayesian Optimization
Dynamic Causal Bayesian Optimization
Virginia Aglietti
Neil Dhir
Javier I. González
Theodoros Damoulas
28
22
0
26 Oct 2021
Reinforcement Learning for Education: Opportunities and Challenges
Reinforcement Learning for Education: Opportunities and Challenges
Adish Singla
Anna N. Rafferty
Goran Radanović
Neil T. Heffernan
AI4Ed
OffRL
19
41
0
15 Jul 2021
Causal Reinforcement Learning using Observational and Interventional
  Data
Causal Reinforcement Learning using Observational and Interventional Data
Maxime Gasse
Damien Grasset
Guillaume Gaudron
Pierre-Yves Oudeyer
CML
OffRL
34
50
0
28 Jun 2021
Independent mechanism analysis, a new concept?
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
23
100
0
09 Jun 2021
Causal Influence Detection for Improving Efficiency in Reinforcement
  Learning
Causal Influence Detection for Improving Efficiency in Reinforcement Learning
Maximilian Seitzer
Bernhard Schölkopf
Georg Martius
CML
25
75
0
07 Jun 2021
Adaptive Multi-Source Causal Inference
Adaptive Multi-Source Causal Inference
Thanh Vinh Vo
Pengfei Wei
T. Hoang
Tze-Yun Leong
20
1
0
31 May 2021
Sequential Deconfounding for Causal Inference with Unobserved
  Confounders
Sequential Deconfounding for Causal Inference with Unobserved Confounders
Tobias Hatt
Stefan Feuerriegel
CML
27
27
0
16 Apr 2021
Nonlinear Invariant Risk Minimization: A Causal Approach
Nonlinear Invariant Risk Minimization: A Causal Approach
Chaochao Lu
Yuhuai Wu
Jośe Miguel Hernández-Lobato
Bernhard Schölkopf
CML
OOD
35
50
0
24 Feb 2021
Towards Causal Representation Learning
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OOD
CML
AI4CE
43
318
0
22 Feb 2021
Instrumental Variable Value Iteration for Causal Offline Reinforcement
  Learning
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning
Luofeng Liao
Zuyue Fu
Zhuoran Yang
Yixin Wang
Mladen Kolar
Zhaoran Wang
OffRL
18
35
0
19 Feb 2021
Training a Resilient Q-Network against Observational Interference
Training a Resilient Q-Network against Observational Interference
Chao-Han Huck Yang
I-Te Danny Hung
Ouyang Yi
Pin-Yu Chen
OOD
26
14
0
18 Feb 2021
Causal World Models by Unsupervised Deconfounding of Physical Dynamics
Causal World Models by Unsupervised Deconfounding of Physical Dynamics
Minne Li
Girish A. Koushik
Furui Liu
Xu Chen
Zhitang Chen
Jun Wang
SyDa
CML
33
12
0
28 Dec 2020
Multi-task Causal Learning with Gaussian Processes
Multi-task Causal Learning with Gaussian Processes
Virginia Aglietti
Theodoros Damoulas
Mauricio A. Alvarez
Javier I. González
CML
12
17
0
27 Sep 2020
Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with
  Latent Confounders
Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with Latent Confounders
Andrew Bennett
Nathan Kallus
Lihong Li
Ali Mousavi
OffRL
35
43
0
27 Jul 2020
Counterfactual Data Augmentation using Locally Factored Dynamics
Counterfactual Data Augmentation using Locally Factored Dynamics
Silviu Pitis
Elliot Creager
Animesh Garg
BDL
OffRL
26
85
0
06 Jul 2020
Provably Efficient Causal Reinforcement Learning with Confounded
  Observational Data
Provably Efficient Causal Reinforcement Learning with Confounded Observational Data
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
OffRL
31
45
0
22 Jun 2020
Causal Bayesian Optimization
Causal Bayesian Optimization
Virginia Aglietti
Xiaoyu Lu
Andrei Paleyes
Javier Gonz' alez
CML
6
48
0
24 May 2020
Off-policy Policy Evaluation For Sequential Decisions Under Unobserved
  Confounding
Off-policy Policy Evaluation For Sequential Decisions Under Unobserved Confounding
Hongseok Namkoong
Ramtin Keramati
Steve Yadlowsky
Emma Brunskill
OffRL
19
63
0
12 Mar 2020
Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement
  Learning
Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement Learning
Nathan Kallus
Angela Zhou
OffRL
38
58
0
11 Feb 2020
Causally Correct Partial Models for Reinforcement Learning
Causally Correct Partial Models for Reinforcement Learning
Danilo Jimenez Rezende
Ivo Danihelka
George Papamakarios
Nan Rosemary Ke
Ray Jiang
...
Jane X. Wang
Jovana Mitrović
F. Besse
Ioannis Antonoglou
Lars Buesing
AI4TS
24
32
0
07 Feb 2020
Improving Generalizability of Fake News Detection Methods using
  Propensity Score Matching
Improving Generalizability of Fake News Detection Methods using Propensity Score Matching
Bo Ni
Zhichun Guo
Jianing Li
Meng Jiang
23
12
0
28 Jan 2020
Causality for Machine Learning
Causality for Machine Learning
Bernhard Schölkopf
CML
AI4CE
LRM
16
450
0
24 Nov 2019
Task-Relevant Adversarial Imitation Learning
Task-Relevant Adversarial Imitation Learning
Konrad Zolna
Scott E. Reed
Alexander Novikov
Sergio Gomez Colmenarejo
David Budden
Serkan Cabi
Misha Denil
Nando de Freitas
Ziyun Wang
GAN
28
61
0
02 Oct 2019
Off-Policy Evaluation in Partially Observable Environments
Off-Policy Evaluation in Partially Observable Environments
Guy Tennenholtz
Shie Mannor
Uri Shalit
OffRL
14
85
0
09 Sep 2019
Environment Reconstruction with Hidden Confounders for Reinforcement
  Learning based Recommendation
Environment Reconstruction with Hidden Confounders for Reinforcement Learning based Recommendation
Wenjie Shang
Yang Yu
Qingyang Li
Zhiwei Qin
Yiping Meng
Jieping Ye
CML
22
51
0
12 Jul 2019
Policy Targeting under Network Interference
Policy Targeting under Network Interference
Davide Viviano
38
33
0
24 Jun 2019
Disentangled State Space Representations
Disentangled State Space Representations
Ðorðe Miladinovic
Muhammad Waleed Gondal
Bernhard Schölkopf
J. M. Buhmann
Stefan Bauer
DRL
31
30
0
07 Jun 2019
1